124 lines
5 KiB
Plaintext
124 lines
5 KiB
Plaintext
|
@LAZYGLOBAL off.
|
||
|
|
||
|
run once "lib/rendezvous".
|
||
|
run once "lib/rocket".
|
||
|
run once "lib/vectors".
|
||
|
|
||
|
|
||
|
function translate {
|
||
|
//
|
||
|
// Translate the ship's position by the given vector using RCS thrusters.
|
||
|
//
|
||
|
parameter translation_vector_delegate.
|
||
|
parameter max_speed.
|
||
|
|
||
|
local lock translation_vector to translation_vector_delegate().
|
||
|
// Find available RCS acceleration by Newton's second law: (F=mg). Note that the acceleration is conservatively divided
|
||
|
// by 6 since thrusters might not be aligned with thrust vector (but assumed evenly distributed on the 6 axes).
|
||
|
// Furthermore, acceleration is limited to 0.05m/s^2 since small ships with low mass are uncontrollable if allowed to accelerate wildly.
|
||
|
local acceleration is min(0.05, (rcs_maxthrust() / SHIP:MASS) / 6).
|
||
|
// Time t to travel distance d under constant acceleration a is t = sqrt(2d/a) (https://en.wikipedia.org/wiki/Equations_for_a_falling_body).
|
||
|
// Multiply this by the available acceleration to get speed (s * m/s^2 = m/s) required to decelerate to 0 by the time d=0.
|
||
|
local lock desired_speed to min(max_speed, sqrt(2*translation_vector:mag / acceleration) * acceleration).
|
||
|
local lock desired_velocity to translation_vector:normalized * desired_speed.
|
||
|
|
||
|
// The proportional gain factor is set to the square root of the ship's mass. Why? It was empirically shown to work.
|
||
|
// The idea is that small ships are more sensitive to adjustments, and so small error corrections will do more harm than good.
|
||
|
local pid_x is PIDLOOP(sqrt(SHIP:MASS), 0.01, 0.001, -1, 1). // kp, ki, kd, minoutput, maxoutput
|
||
|
local pid_y is PIDLOOP(sqrt(SHIP:MASS), 0.01, 0.001, -1, 1).
|
||
|
local pid_z is PIDLOOP(sqrt(SHIP:MASS), 0.01, 0.001, -1, 1).
|
||
|
|
||
|
//vdraw(SHIP:controlpart:position, translation_vector@, WHITE).
|
||
|
//vdraw(SHIP:controlpart:position, relative_velocity@, GREEN).
|
||
|
|
||
|
RCS on.
|
||
|
until translation_vector:mag < 0.05 and relative_velocity():mag < 0.01 {
|
||
|
set pid_x:setpoint to desired_velocity:x.
|
||
|
set pid_y:setpoint to desired_velocity:y.
|
||
|
set pid_z:setpoint to desired_velocity:z.
|
||
|
|
||
|
local x is pid_x:update(TIME:seconds, relative_velocity():x).
|
||
|
local y is pid_y:update(TIME:seconds, relative_velocity():y).
|
||
|
local z is pid_z:update(TIME:seconds, relative_velocity():z).
|
||
|
|
||
|
set SHIP:CONTROL:TRANSLATION to ship_raw_to_ship_control(V(x,y,z)).
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
function dock {
|
||
|
//
|
||
|
// Dock the ship with another vessel.
|
||
|
// Prerequisites:
|
||
|
// Must be controlling from a local docking port (right click -> control from here).
|
||
|
// TARGET must be a docking port (right click -> set as target).
|
||
|
//
|
||
|
parameter max_translation_speed is 1.0.
|
||
|
parameter final_docking_speed is 0.1.
|
||
|
|
||
|
print "==================== DOCKING =====================".
|
||
|
|
||
|
// Target port vectors
|
||
|
local lock target_port to TARGET:nodeposition.
|
||
|
local lock target_port_facing to TARGET:portfacing:vector.
|
||
|
//vdraw(target_port@, target_port_facing@, CYAN).
|
||
|
|
||
|
// Local port vectors
|
||
|
local lock local_port to SHIP:controlpart:nodeposition.
|
||
|
local lock local_port_facing to SHIP:controlpart:portfacing:vector.
|
||
|
//vdraw(local_port@, local_port_facing@, CYAN).
|
||
|
|
||
|
SAS off.
|
||
|
set NAVMODE to "TARGET".
|
||
|
|
||
|
print "==> Aligning with target port".
|
||
|
local lock alignment_direction to lookdirup(-target_port_facing, TARGET:ship:facing:vector). // align dock-on-dock but with UP the same direction
|
||
|
lock STEERING to alignment_direction.
|
||
|
wait until vang(SHIP:facing:vector, alignment_direction:vector) <= 1.
|
||
|
|
||
|
print "==> Translating".
|
||
|
// TODO: Translate "around" the target vessel on different axes first so we dont fail if behind the target docking port.
|
||
|
translate({return (target_port + target_port_facing) - (local_port + local_port_facing).}, max_translation_speed).
|
||
|
|
||
|
print "==> Docking".
|
||
|
// TARGET will be unset the moment we dock, causing many of the calculations and local locks to cause errors.
|
||
|
// Therefore, the final docking will be done using the information available to us now, without any error corrections.
|
||
|
lock STEERING to SHIP:facing.
|
||
|
set SHIP:CONTROL:TRANSLATION to ship_raw_to_ship_control(target_port - local_port).
|
||
|
wait until relative_velocity():mag >= final_docking_speed.
|
||
|
unlock_control().
|
||
|
|
||
|
wait until not HASTARGET.
|
||
|
print "==> DOCKING COMPLETE".
|
||
|
}
|
||
|
|
||
|
|
||
|
dock().
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
// TODO: Make GUI with dropdown of target:dockingports and SHIP:dockingports so user can't fuck it up.
|
||
|
//if not HASTARGET {
|
||
|
// print "Please select a target".
|
||
|
// return.
|
||
|
//}
|
||
|
//function find_docking_port {
|
||
|
// parameter target. // SHIP or TARGET.
|
||
|
// parameter target_name is target:name.
|
||
|
//
|
||
|
// if target:istype("DockingPort") {
|
||
|
// return target.
|
||
|
// }
|
||
|
//
|
||
|
// local target_ports is target:dockingports.
|
||
|
// if target_ports:empty {
|
||
|
// print "No docking ports on " + target_name.
|
||
|
// return.
|
||
|
// }
|
||
|
// if target_ports:length <> 1 {
|
||
|
// print "Multiple docking ports on " + target_name + ", please select one and try again".
|
||
|
// return.
|
||
|
// }
|
||
|
// return target_ports[0]
|
||
|
//}
|