Implement docking.

This commit is contained in:
Casper V. Kristensen 2019-02-12 23:33:17 +01:00
parent fc688799fe
commit 49b5236521
Signed by: caspervk
GPG key ID: 289CA03790535054
6 changed files with 212 additions and 11 deletions

124
dock.ks Normal file
View file

@ -0,0 +1,124 @@
@LAZYGLOBAL off.
run once "lib/rendezvous".
run once "lib/rocket".
run once "lib/vectors".
function translate {
//
// Translate the ship's position by the given vector using RCS thrusters.
//
parameter translation_vector_delegate.
parameter max_speed.
local lock translation_vector to translation_vector_delegate().
// Find available RCS acceleration by Newton's second law: (F=mg). Note that the acceleration is conservatively divided
// by 6 since thrusters might not be aligned with thrust vector (but assumed evenly distributed on the 6 axes).
// Furthermore, acceleration is limited to 0.05m/s^2 since small ships with low mass are uncontrollable if allowed to accelerate wildly.
local acceleration is min(0.05, (rcs_maxthrust() / SHIP:MASS) / 6).
// Time t to travel distance d under constant acceleration a is t = sqrt(2d/a) (https://en.wikipedia.org/wiki/Equations_for_a_falling_body).
// Multiply this by the available acceleration to get speed (s * m/s^2 = m/s) required to decelerate to 0 by the time d=0.
local lock desired_speed to min(max_speed, sqrt(2*translation_vector:mag / acceleration) * acceleration).
local lock desired_velocity to translation_vector:normalized * desired_speed.
// The proportional gain factor is set to the square root of the ship's mass. Why? It was empirically shown to work.
// The idea is that small ships are more sensitive to adjustments, and so small error corrections will do more harm than good.
local pid_x is PIDLOOP(sqrt(SHIP:MASS), 0.01, 0.001, -1, 1). // kp, ki, kd, minoutput, maxoutput
local pid_y is PIDLOOP(sqrt(SHIP:MASS), 0.01, 0.001, -1, 1).
local pid_z is PIDLOOP(sqrt(SHIP:MASS), 0.01, 0.001, -1, 1).
//vdraw(SHIP:controlpart:position, translation_vector@, WHITE).
//vdraw(SHIP:controlpart:position, relative_velocity@, GREEN).
RCS on.
until translation_vector:mag < 0.05 and relative_velocity():mag < 0.01 {
set pid_x:setpoint to desired_velocity:x.
set pid_y:setpoint to desired_velocity:y.
set pid_z:setpoint to desired_velocity:z.
local x is pid_x:update(TIME:seconds, relative_velocity():x).
local y is pid_y:update(TIME:seconds, relative_velocity():y).
local z is pid_z:update(TIME:seconds, relative_velocity():z).
set SHIP:CONTROL:TRANSLATION to ship_raw_to_ship_control(V(x,y,z)).
}
}
function dock {
//
// Dock the ship with another vessel.
// Prerequisites:
// Must be controlling from a local docking port (right click -> control from here).
// TARGET must be a docking port (right click -> set as target).
//
parameter max_translation_speed is 1.0.
parameter final_docking_speed is 0.1.
print "==================== DOCKING =====================".
// Target port vectors
local lock target_port to TARGET:nodeposition.
local lock target_port_facing to TARGET:portfacing:vector.
//vdraw(target_port@, target_port_facing@, CYAN).
// Local port vectors
local lock local_port to SHIP:controlpart:nodeposition.
local lock local_port_facing to SHIP:controlpart:portfacing:vector.
//vdraw(local_port@, local_port_facing@, CYAN).
SAS off.
set NAVMODE to "TARGET".
print "==> Aligning with target port".
local lock alignment_direction to lookdirup(-target_port_facing, TARGET:ship:facing:vector). // align dock-on-dock but with UP the same direction
lock STEERING to alignment_direction.
wait until vang(SHIP:facing:vector, alignment_direction:vector) <= 1.
print "==> Translating".
// TODO: Translate "around" the target vessel on different axes first so we dont fail if behind the target docking port.
translate({return (target_port + target_port_facing) - (local_port + local_port_facing).}, max_translation_speed).
print "==> Docking".
// TARGET will be unset the moment we dock, causing many of the calculations and local locks to cause errors.
// Therefore, the final docking will be done using the information available to us now, without any error corrections.
lock STEERING to SHIP:facing.
set SHIP:CONTROL:TRANSLATION to ship_raw_to_ship_control(target_port - local_port).
wait until relative_velocity():mag >= final_docking_speed.
unlock_control().
wait until not HASTARGET.
print "==> DOCKING COMPLETE".
}
dock().
// TODO: Make GUI with dropdown of target:dockingports and SHIP:dockingports so user can't fuck it up.
//if not HASTARGET {
// print "Please select a target".
// return.
//}
//function find_docking_port {
// parameter target. // SHIP or TARGET.
// parameter target_name is target:name.
//
// if target:istype("DockingPort") {
// return target.
// }
//
// local target_ports is target:dockingports.
// if target_ports:empty {
// print "No docking ports on " + target_name.
// return.
// }
// if target_ports:length <> 1 {
// print "Multiple docking ports on " + target_name + ", please select one and try again".
// return.
// }
// return target_ports[0]
//}

View file

@ -83,7 +83,7 @@
<keywords3 keywords="vecdraw;vecdrawargs;hudtext;clearvecdraws" />
<!-- Various Functions -->
<keywords3 keywords="vessel;NODE" />
<keywords3 keywords="vessel;NODE;PIDLOOP" />
<!-- Global Structures -->
<keywords3 keywords="LEXICON;LIST;QUEUE;RANGE;STACK;UNIQUESET" />

View file

@ -12,13 +12,24 @@ function estimated_burn_duration {
// https://space.stackexchange.com/questions/27375/how-do-i-calculate-a-rockets-burn-time-from-required-velocity
//
parameter burn.
parameter isp is isp_sum().
parameter maxthrust is SHIP:maxthrust.
if burn:istype("Node") {
set burn to burn:deltav.
}
local exhaust_velocity is isp_sum() * (CONSTANT:G * KERBIN:mass).
return ((SHIP:mass * exhaust_velocity) / SHIP:maxthrust) * (1 - CONSTANT:E^(-burn:mag/exhaust_velocity)).
local exhaust_velocity is isp * (CONSTANT:G * KERBIN:mass).
return ((SHIP:mass * exhaust_velocity) / maxthrust) * (1 - CONSTANT:E^(-burn:mag/exhaust_velocity)).
}
function estimated_rcs_burn_duration {
//
// Calculate estimated burn duration of a vector or node using RCS thrusters instead of main engines.
//
parameter burn.
return estimated_burn_duration(burn, rcs_isp_sum(), rcs_maxthrust()).
}

View file

@ -3,12 +3,26 @@
run once "lib/node".
function relative_velocity {
//
// Return the relative orbital velocity between the ship and our target in the target's inertial frame of reference.
//
if not HASTARGET {
return V(0,0,0). // avoids 'has no target' errors upon docking
}
local t is TARGET.
if TARGET:istype("Part") { // e.g. if selected docking port as target
set t to TARGET:ship.
}
return SHIP:velocity:orbit - t:velocity:orbit.
}
function kill_relative_velocity {
parameter target is TARGET.
parameter tolerance is 0.1.
local relative_velocity is target:velocity:orbit - SHIP:velocity:orbit.
if relative_velocity:mag > tolerance {
execute_burn(relative_velocity).
if relative_velocity():mag > tolerance {
execute_burn(-relative_velocity()).
}
}

View file

@ -51,6 +51,41 @@ function isp_sum {
}
function rcs_isp_sum {
//
// Return the sum of ISP for RCS thrusters.
//
local sum is 0.
for thruster in SHIP:modulesnamed("ModuleRCSFX") {
set sum to sum + thruster:getfield("rcs isp").
}
return sum.
}
function rcs_maxthrust {
// There's no way to get thrust of RCS dynamically in kOS; gonna have to hard-code it :/
// Source: https://wiki.kerbalspaceprogram.com/wiki/Reaction_Control_System#Thrusters
local rcs_thrusts is LEXICON( // in kN
"RCSBlock", 1.0, // RV-105 RCS Thruster Block
"linearRcs", 2.0, // Place-Anywhere 7 Linear RCS Port
"vernierEngine", 12.0 // Vernor Engine
).
local thrust_sum is 0.
for module in SHIP:modulesnamed("ModuleRCSFX") {
local part_name is module:part:name.
if rcs_thrusts:haskey(part_name) {
set thrust_sum to thrust_sum + rcs_thrusts[part_name].
} else { // if non-stock part
print "WARNING: Unknown RCS Thruster '" + part_name + "'; using default thrust of 1.0 kN".
set thrust_sum to thrust_sum + 1.0.
}
}
return thrust_sum.
}
function deploy_fairings {
print "Deploying fairings".
for module in SHIP:modulesnamed("ModuleProceduralFairing") {

View file

@ -16,23 +16,40 @@ set_actual_prograde().
function vdraw {
//
// Wrapper for the VECDRAW-function that doesn't hide the vector by default.
//
parameter start. // vector or function. For example, pass {return UP:vector.} to automatically update the draw
parameter vector. // same as start
parameter color is RED.
parameter label is "".
parameter scale is 1.0.
parameter width is 0.2.
vecdraw(
return vecdraw(
start,
vector,
color,
label,
1.0, // scale
true, // show? defaults to false in original vecdraw
0.2 // width
scale,
true, // show
width
).
}
function ship_raw_to_ship_control {
//
// Translate a vector in SHIP-RAW coordinates to one in SHIP-CONTROL (STARBOARD, TOP, FORE) coordinates.
//
parameter vec.
return V(vdot(vec, FACING:starvector), // projection is correct because SHIP's FACING vectors are normalised
vdot(vec, FACING:topvector),
vdot(vec, FACING:forevector)). // Same order as SHIP:CONTROL:TRANSLATION's input
}
// ANGLES
lock actual_prograde_pitch to vang(actual_prograde:vector, UP:vector).