aucoin/tools/find_best_tx_alg_test.py

173 lines
4.2 KiB
Python
Raw Normal View History

2018-07-15 23:30:55 +02:00
import time
from random import randint, random
import matplotlib.pyplot as plt
import numpy as np
from aucoin.blockchain import Blockchain
from aucoin.mempool import Mempool
from aucoin.miner import find_best_transactions
class Transaction(object):
_fee = 1
_hash = b""
prev_tx_hash = b"sdfasfasdfasdfasdf"
txout_index = 0
signature = b""
public_key = b""
_size = 12
@property
def hash(self):
return self._hash
def __bytes__(self):
return self.prev_tx_hash + \
self.txout_index.to_bytes(4, "big") + \
self.signature + \
self.public_key
@property
def inputs(self):
return [self]
@property
def size(self) -> int:
"""
:return: Size of transaction in bytes.
"""
return self._size
def fee(self, bc=None, mem=None, session=None) -> int:
return self._fee
def __str__(self, *args, **kwargs):
return f"Hash: {self._hash.hex()}"
def generate_transactions(number: int, pct=70):
txs = []
for i in range(number):
tx = Transaction()
tx._hash = i.to_bytes(12, "big")
tx._size = randint(30, 60)
tx._fee = randint(10, 30 ) + tx._size/10
if random() < pct/100 and len(txs) > 0:
tx.prev_tx_hash = txs[randint(0, len(txs)-1)].hash
## tx._fee += randint(0, 100)
pass
else:
tx.prev_tx_hash = b"sdfasfasdfasdfasdf"
txs.append(tx)
return txs
def simple_alg(txs, max_size):
size = 0
total = 0
best = []
sorted_txs = sorted(txs, key=lambda tx: tx._fee / tx.size, reverse=True)
for tx in sorted_txs:
if mempool.transaction(tx.prev_tx_hash) is None:
if size + tx.size < max_size:
size += tx.size
total += tx._fee
best.append(tx)
return best, total
sums_best = [[],[],[],[]]
sums = [[],[],[],[]]
max_size = 2048*2
"""
start = 0
end = 1000
times_best = []
times_simple = []
for j in [0, 1, 2, 3]:
transactions = generate_transactions(end, j*20)
for i in range(start, end):
mempool = Mempool()
blockchain = Blockchain()
txs = transactions[0:i]
for tx in txs:
mempool[tx.hash] = tx
# log time and run alg.
t = time.time()
best, total = find_best_transactions(blockchain, mempool, max_size, None)
times_best.append(time.time() - t)
# log time and run simple alg.
t = time.time()
simple_b, simple_total = simple_alg(txs, max_size)
times_simple.append(time.time() - t)
sums_best[j].append(total)
sums[j].append(simple_total)
print(mean(sums_best[0]), mean(sums[0]))
print(f"Alg: {sum(times_best)}")
print(f"Simple: {sum(times_simple)}")
x = range(start, end)
plt.figure(1)
plt.subplot(141)
plt.plot(x, np.array(sums_best[0]), 'g', x, sums[0], 'r--')
plt.xlabel('transactions in mempool')
plt.ylabel('Total fee')
plt.title('0% dependent')
plt.subplot(142)
plt.plot(x, np.array(sums_best[1]), 'g', x, sums[1], 'r--')
plt.title('20% dependent')
plt.xlabel('transactions in mempool')
plt.subplot(143)
plt.plot(x, np.array(sums_best[2]), 'g', x, sums[2], 'r--')
plt.title('40% dependent')
plt.xlabel('transactions in mempool')
plt.subplot(144)
plt.plot(x, np.array(sums_best[3]), 'g', x, sums[3], 'r--')
plt.title('60% dependent')
plt.xlabel('transactions in mempool')
plt.show()
"""
times = []
times_simple = []
for i in range(0, 100):
mempool = Mempool()
blockchain = Blockchain()
txs = generate_transactions(1000, i)
for tx in txs:
mempool[tx.hash] = tx
t = time.time()
best, total = find_best_transactions(blockchain, mempool, max_size, None)
times.append(time.time() - t)
t = time.time()
simple_b, simple_total = simple_alg(txs, max_size)
times_simple.append(time.time() - t)
print(f"Extended: {sum(times)}")
print(f"Simple: {sum(times_simple)}")
x = range(0, 100)
plt.figure(2)
plt.plot(x, np.array(times)*1000, 'g', x, np.array(times_simple)*1000, 'r--')
plt.title('Runningtime of extended (green) compared to simple (red) algorithm')
plt.xlabel('% of dependent transactions (of 1000 in total)')
plt.ylabel('milliseconds')
plt.show()