
S I LV E R S T R E A M

A F U L LY D E C E N T R A L I S E D M U S I C S T R E A M -
I N G P L AT F O R M

alexander munch-hansen, 201505956

casper vestergaard kristensen, 201509411

building the internet of things with p2p and cloud

computing

December 2018

Advisor: Niels Olof Bouvin

DEPARTMENT OF COMPUTER SCIENCE

AARHUS

UNIVERSITY AU

S I LV E R S T R E A M

alexander munch-hansen

casper vestergaard kristensen

A fully decentralised music streaming platform

Building the Internet of Things with P2P and Cloud Computing
Department of Computer Science

Science & Technology
Aarhus University

December 2018

Alexander Munch-Hansen & Casper Vestergaard Kristensen: Silver-
stream, Building the Internet of Things with P2P and Cloud Comput-
ing , © December 2018

A B S T R A C T

Peer to peer technologies effectively allow for transforming previ-
ously centralised technologies to work in a completely decentralised
way, by allowing the spreading of the work-load to multiple peers.
In this project we develop a scalable and reliable music streaming
platform that is completely decentralised. This platform utilises the
Mainline-DHT to discover music which can then be played by the
end-users of the platform. We present results of trials using varying
algorithms for discovering songs and ways of acting in the Mainline-

DHT network. The results show a clear difference, when we alter these
things.

v

C O N T E N T S

1 introduction 1

2 related work 3

2.1 Preliminaries 3

2.1.1 DHT 3

2.1.2 mainline-DHT 3

2.1.3 Kademlia 4

2.2 Related work 4

3 analysis 7

4 design and methodology 9

4.1 Design of the system as well as the evaluation 9

4.1.1 Evaluations and testing 9

4.2 Communicating the design 11

4.2.1 System overview 11

4.2.2 Use cases 12

5 implementation 15

5.0.1 Further work 18

6 evaluation 19

6.1 Playback should begin within reasonable time 19

6.1.1 Evaluation and results 19

6.2 We should be able to build a database of torrents rea-
sonably quickly 20

6.2.1 Evaluation and results 21

7 conclusion 23

bibliography 25

vii

1
I N T R O D U C T I O N

The music streaming business is a highly competitive and centralised
one, and it has spawned several big companies such as Spotify and
Deezer. Because of this, all major services within this subject are highly
centralised and closed source. As such, the companies are in full con-
trol of their platforms, leading the users of the systems to having to
rely on the company keeping their service and servers alive. Addi-
tionally, the users have to rely on the company deeming it worthy to
buy the rights to the music they want to listen to. As such, the users
have negligible control over what music is available to them.

In this project, we design and implement a fully decentralised mu-
sic streaming platform, Silverstream, as a response to the growing
centralisation of the music streaming industry. Being a peer-to-peer
system, it relies heavily on users joining together and allowing oth-
ers to leech from them. Silverstream uses the DHT of the BitTor-

rent network, known as the "Mainline-DHT ", as a way of discovering
music and to increase the amount of music available in the system.
This is accomplished by inserting a large number of DHT nodes into
the Mainline-DHT, which allows for passively listening to the traffic
within the network. By processing this information, the available mu-
sic can be discovered, and in the end the user is capable of searching
and playing back music directly from the BitTorrent network.

We experiment with different algorithms for inserting crawler nodes
into the BitTorrent network, as well as differ the behaviour of the
nodes themselves, in an attempt to find a golden ratio between the
amount of bandwidth the nodes use versus the information gained.
This requires careful testing, as the Mainline-DHT is a living organism
with millions of nodes worldwide leaving and joining at all times of
the day.

All parts of the system are custom built for this project: This in-
cludes a framework built on top of the LibTorrent framework1, which
is used by many well-known torrent clients such as qBitTorrent and
Deluge, a framework for playing music using mpv and our own Ka-

demlia implementation. While these frameworks are very feature-
packed, it is important to emphasise that we use them only sparingly;
in particular, our use is limited to things that are irrelevant to this
course, such as the details of playing different audio formats or the
BitTorrent metadata-exchange protocol between two peers. We have
implemented a fully-functioning Kademlia DHT node conforming to
the requirements of the BitTorrent protocol, allowing us exactly the

1 https://libtorrent.org

1

2 introduction

behaviour we desired and flexibility during experimentation – this
was particularly important to us, as we did not want to disrupt the
traffic of the live Mainline-DHT.

In recent years, there has been a major push for applications to in-
clude more decentralised components, as opposed to the completely
centralised Server-Client architecture; this tends to allow for a more
robust application, as it moves away from the single point of failure
of the server. Additionally, the peer-to-peer architecture allows com-
panies cost-savings by moving some of the work-load on to the users
of the system, potentially allowing for cheaper solutions. However,
while great in theory, peer-to-peer systems also tend to be more diffi-
cult to keep secure and running smoothly, since it depends on users
participating honestly with a good internet connection. A music-streaming
platform additionally requires that enough peers are distributing the
music for the system to be fast enough to stream songs. Because of
this, most torrent system works on a tit-for-tat policy, such that all
users have to cooperate, share and in general participate nicely, for
them to not get booted from the network.

2
R E L AT E D W O R K

As mentioned in the introduction, not many decentralised music stream-
ing projects have been proposed before. As such, we focus on related
work in regards to the individual parts of the system.

2.1 preliminaries

We will throughout the report assume that the reader is somewhat
familiar with basic concepts within networking and communication.
Because we consider the details of DHT’s and the Mainline-DHT in
specific as well as Kademlia as being slightly more obscure, we here
describe them in necessary detail.

2.1.1 DHT

Distributed hash tables (DHTs) are a class of a decentralised distributed
systems that provides a look-up service similar to a hash table. It
contains (key, value)-pairs and any participating node can efficiently
retrieve the value associated with a given key. Keys are unique iden-
tifiers, which map to particular values, which in turn can be arbitrary
data. Responsibility for maintaining this mapping from keys to val-
ues is distributed among the nodes in such a way that a change in
the set of participants causes a minimal amount of disruption. This
allows a DHT to scale to extremely large numbers of nodes and to han-
dle continual node arrivals, departures, and failures. This makes DHTs
an ideal way of storing information in unstable peer-to-peer networks
with high churn.

2.1.2 mainline-DHT

Mainline-DHT is the name given to the Kademlia-based DHT used by
BitTorrent clients to find peers via the BitTorrent protocol. The idea
of utilising a DHT for distributed tracking was first implemented in
Azureus, which is now known as VUZE, from which it gained signifi-
cant popularity. Shortly after, BitTorrent Inc. released their own DHT

into their client, called Mainline-DHT and thus popularised the use of
distributed tracking in the BitTorrent Protocol.

3

4 related work

2.1.3 Kademlia

Kademlia is a distributed hash table for decentralised peer-to-peer. It
specifies the structure of the network and the exchange of information
through node look-ups and as such specifies a structured peer-to-peer
network.
Kademlia does not specify a way of picking node-id, this allows

for two nodes which might be geographically in two very different
locations, to be relatively close within Kademlia. This specification
is being questioned by a BitTorrent Enhancement Proposal (BEP), but
as of writing this, it is still allowed to determine your own node-id.
Kademlia routing tables consist of a list for each bit of the node ID,
so each node will keep 160 lists, if the id-space is 160 bits. Every list
corresponds to a specific distance from the node and this distance is
computed by calculating the XOR between two node-ids. Nodes that
can go in the nth list must have a differing nth bit from the nodes
node-id. In Kademlia, these lists are referred to as k-buckets. K is
simply a system wide number, which can be set as the user sees fit.
Every k-bucket is a list having up to k entries inside.

2.2 related work

In general, much work and effort have gone into the crawling and
monitoring of users and torrents in torrent DHTs.

One such system was built by Scott Wolchok and J. Alex Halder-
man[7]. They created a crawler which only supported the VUZE-DHT

and was not capable of running on Mainline-DHT without modifying
it first. This VUZE-DHT crawler was called ClearView and its main pur-
pose was to be able to crawl and build a database over the torrents
existing in the VUZE-DHT. They used a technique to gather data by the
means of what is essentially a sybil attack. A sybil attack is when
you insert a lot of nodes into a network and you start to control what
goes on, as you can use these nodes to route poorly and spread mis-
information. ClearView however used these nodes to passively listen
and whenever they were asked to replicate data, they would log this.
Furthermore, the nodes jumped around the address space in an at-
tempt to gather more data while re-using nodes and thus saving com-
pute power. This Crawler was then utilised in another project called
SuperSeed. SuperSeed uses ClearView to crawl the VUZE-DHT and make
the user of the system, capable of scraping torrents and gathering a
database over what the crawler finds. As SuperSeed uses ClearView,
this system can only be used for the VUZE-DHT. There is one main
difference as to why this is; The Mainline-DHT doesn’t support repli-
cation, which is what ClearView extensively used. As such, SuperSeed
can’t be ported to work as efficiently on the Mainline-DHT without
fundamentally changing the system.

2.2 related work 5

Memon et al. developed a system, Montra, for monitoring the traffic
within the DHT, where the DHT monitored is unspecified[5]. As the sys-
tem attempts to monitor what gets shared and such, it inserts peers
into the DHT and passively watches. The purpose of Montra was to
question how many peers to insert into the DHT to maximise the infor-
mation gathered. If too many peers are inserted into a DHT, this might
disrupt the traffic as the newly inserted nodes won’t add any informa-
tion. While too many nodes might be an issue, so can too few nodes
be. If too few are inserted into the DHT, you might not be able to get a
great enough understanding of the traffic circulating the DHT. There-
fore, Memon et al. sought to find if there was a diminishing return on
the amount of nodes to insert. Memon et al. managed to concurrently
run 32.000 nodes without disrupting traffic and concluded this was
optimal, as they managed to capture 90% of the traffic.

Scott A. Crosby and Dan S. Wallach have investigated both how
well the look-ups in the Mainline-DHT works and how long they
on average take[1]. They conclude that roughly 20% of all look-ups
would end up in dead-ends and that a lookup on average would take
around a minute. However, Crosby and Wallach performed these tests
on a version of the Mainline-DHT which had several performance im-
pacting bugs at the time of their testings, which they would fix before
doing their testings, as such, the Mainline-DHT was likely slower at
the time.

Cubit is a system created with the purpose of supporting full text
search and is implemented by Wong et al. This system uses the Leven-
shtein distance, an edit-distance, to determine how close two keywords
are to each other. A node in the Cubit network has a specific key-
word taken from the list of files in the system. Each node keeps track
of something called multi-resolution rings, which each node keeps up-
dated with other nodes whose keyword is a specific Levenshtein dis-
tance away from its own keyword. Searching is done by giving a
keyword to a node and letting this node calculate the edit distance,
thus determining where to send the request to. As the Levenshtein
distance isn’t defined for phrases, they establish a term called the Ad-
ditive Minimum Edit-Distance, which is essentially the Levenshtein
distance calculated over each keyword of the phrase. They conclude
their system drastically reduces message overhead, as they avoid us-
ing flooding for searching and they use simple gossipping when a
node joins or when a node is noticed to be dead.

While the aforementioned systems have remained mostly in the
academic world, other have gained tremendous popularity among
the general public. These systems include software like Napster for
music streaming, Popcorn Time for movie streaming, and the BitTor-

rent protocol, used for general file sharing. Common for the two for-
mer systems is the fact that the file directory relies on a centralised
component, while only the bandwidth-expensive operation of actu-

6 related work

ally sharing the files are built on a peer-to-peer architecture. This de-
sign decision makes it relatively easy for the authorities to shut down
the operation of the networks by targeting the centralised component,
as was the case with Napster[2].

Unlike Napster, the BitTorrent protocol can operate completely
without any centralised directory service[4]. This, however, requires
the user to gain knowledge of the file-ID they wish to download out-
of-band. In the context of BitTorrent, most users do this through a
centralised directory called a BitTorrent tracker. The Popcorn Time
software uses a set of these trackers to search, discover, and play
movies over the BitTorrent protocol[3].

The centralisation of a component like the BitTorrent tracker can
have many benefits, and in most cases helps increase the performance
and usability of the system, but it can also decrease the system’s re-
sistance to censorship. A well known example of this centralisation
being a problem was with the blocking of the BitTorrent tracker
The Pirate Bay in many countries around the world, which sought to
make it more difficult for the users to discover files[6].

3
A N A LY S I S

While most, if not all, of the systems mentioned in Chapter 2 per-
forms some sort of monitoring of a DHT, they differ in their end-goal
of this monitoring as well as how they accomplish it, as does ours
from theirs. We do not seek to do an aggressive monitoring as with
ClearView, which only works due to the VUZE-DHT using replication.
Instead, we will ensure our node IDs are distributed nicely within
the ID-space from the beginning, such that all our nodes do not end
up within the same bucket of the other nodes. This is required since
we have to rely on passively listening to the traffic, as the Mainline-

DHT does not support replication.
Due to the previous discussion, Silverstream more resemble the

system Montra by Memon et al., however, while the execution might
seem similar, the end-goal still differs: As mentioned, they sought to
simply monitor the traffic, peers, files, etc., and as such not necessarily
keep track of exactly what files are available at any given point in
time. This, however, is crucial to us, as our system must facilitate
the playback and streaming of said files. Because of these points, we
argue that our specific use case has not been investigated much in
the academic world and we will therefore need to extensively test
the individual parts of Silverstream and its capabilities in regards to
looking up files, downloading said files and being able to flawlessly
play these back.

Most of the existing systems mentioned in 2 depend on peer-to-
peer for their streaming. While this is a great use-case and surely
what we intend to do as well, it can have issues if too few peers have
a given file, causing it to constantly buffer or potentially never being
available for playback. For Silverstream to work for end-users, we
have to find a way of working around this. A solution could be to play
the first song in a playlist while downloading the next. This would
solve the issue for all but the first file.

None of the mentioned articles mention downloading or streaming
from the BitTorrent network which they monitor. Because of this,
we have no evidence for any particular method functioning better
than others. As such, we have chosen to simply utilise the sequential
downloading feature of LibTorrent, which will allow playback to
begin before the file has fully finished downloading.

Furthermore, the papers had no mention of creating a database al-
lowing for mapping of actual song names to their corresponding id-

hash. We will need to develop this system – ideally also allowing for
fuzzy matching or full text search. Fuzzy matching is a technique used

7

8 analysis

when an exact match cannot be found in the database for the text
being searched for; this is required because users cannot be trusted
with inputting perfectly correct song-names, while at the same time
torrents may include misspelled file names. As mentioned, no theo-
retical proof of any look-up or indexing speeds were found, as such
we start from scratch and will have to figure out also what informa-
tion we need to hold, allowing for quick searches and in the end a
nice user experience.

Additionally we also need to be able to scale the system in regards
to the number of nodes we insert into the DHT in case we need to ad-
just our search space; this is touched upon by the authors of Montra.
Last but not least, the Mainline-DHT allows nodes to pick their own
node-id. This means we can further broaden the search space with
carefully placed nodes. This is not unlike what ClearView does, how-
ever we do not intent to jump around the Mainline-DHT, but rather
place the nodes and simply wait.

To conclude, we establish two main hypotheses:

• Playback should begin within reasonable time

• We should be able to build a database of torrents reasonably
quickly

Additionally, we establish some tests we can perform, to make con-
clusions in regards to the hypotheses.

4
D E S I G N A N D M E T H O D O L O G Y

4.1 design of the system as well as the evaluation

4.1.1 Evaluations and testing

We have established a few areas of the system which we wish to
evaluate and test. These are listed in the following sections.

4.1.1.1 Data gathering

We wish to monitor and evaluate several potential performance bot-
tlenecks with the discovery and collection of data in the DHT. It is
important that we can gather the required data on the content of the
DHT in reasonable time, i.e. we cannot afford to wait two weeks for
our nodes to get a decent grasp of what is going on in the Mainline-

DHT. There are generally two different ways we can accomplish this:
One way is adding more nodes to the network, which might cause
us to take up too much space and run into the issues that Memon
et al. ran into while building Montra. Because of this we will need
to evaluate the number of nodes and optimise the number of nodes.
The other way is to set the nodes’ IDs to hopefully end up in different
buckets of the other nodes in the Mainline-DHT, thus causing us to get
asked about more files and be exposed to more announcements. Keep
in mind, neither of these approaches fixes issues with downloading
speeds as they depend on the upload of the other peers seeding the
file.

We will also need to test if we can find files and download quickly.
To perform most of these evaluations, we will attempt to use the
Mainline-DHT, since it most accurately resembles a live system, where
these aforementioned issues have potential of occurring. However, us-
ing Mainline-DHT can lead to inconsistencies in our evaluations, as
such we would like to additionally run our evaluations with torrents
that we host ourselves. This allows us to double-check our results
from the Mainline-DHT. Whenever quick enough or a desirable amount
of time is mentioned, these refer to the end-user experience and as
such will require tests with such people, to determine how long peo-
ple consider too long.

4.1.1.2 User search network

Not all of the searching is done in the Mainline-DHT. As mentioned,
the goal is to have each peer have their own local database mapping

9

10 design and methodology

songs to hashes, avoiding a centralised server. An issue, however,
with this decentralised setup is that peers need to ask others about a
songs, if they do not know about it themselves. We do not consider
flooding a solid way of accomplishing this, as it results in a large over-
head of messages on top of the already taxing task of participating in
the Mainline-DHT. Therefore, we would like to establish tests where
a user will 1) search for a specific file only known to one user, 2) a
file known by many and 3) a file known by none. The reason for each
scenario is somewhat self-explanatory, except for the scenario where
no one knows the file: This scenario is interesting as we would prefer-
ably want to avoid having to question the entire user group, however
we need to develop the algorithm allowing for this. Yet again, the
time delay we will allow for will be determined through testing with
users.

4.1.1.3 Evaluation framework

Most of what we seek to evaluate are considered to be related to
the Mainline-DHT, as we intend on using this as the main way of
gathering torrent metadata. However, we also wish to evaluate our
searching algorithms in a controlled environment, where we can fo-
cus on the amount of time needed for finding a specific song. If we
can establish a flooding algorithm for the user search network, we ex-
pect the search to function relatively poorly, however, if time allows
for us to design an algorithm allowing us to do full text search within
our already established network, i.e., without the use of an additional
overlay network, it would be interesting to check how much message
overhead we avoid as well as how quickly we are capable of locating
the correct torrent file. However, as this is pushed to further work,
so is the evaluation of said system. Because of this, we will initially
evaluate the search and download time of a single user.

4.1.1.4 Evaluation overview

To allow for an overview of the evaluations we desire to perform, a
table has been made briefly describing in which category we deem
the test to be in, which part of the system it evaluates, which require-
ment there is for the part, which things we can change or vary to
change the behaviour of the part as well as whether or not we want
to test it on the Mainline-DHT. Note, that something is listed as being
a mainline test does not mean it will not be evaluated in a controlled
environment, it merely means that it will also be tested on Mainline-

DHT.

4.2 communicating the design 11

Category Part Requirement Method mainline

Timing related

BitTorrent nodes It shouldn’t take too long to crawl BitTorrent vary nodes 3

BitTorrent nodes It shouldn’t take too long to crawl BitTorrent Vary address space 3

Indexer The indexer should keep up to the infohashes collected Different algorithms 7

User search network It shouldn’t take long for user to find song or conclude nonexistence Different algorithms 7

Whole system When a user starts searching, download should start relatively soon Different algorithms 3

Distance related
User search network It should not require too many jumps to conclude existence of song Different algorithms 7

BitTorrent nodes It shouldn’t take too many jumps to find song from unknown peer Different algorithms 7

Data related BitTorrent nodes There should be a satisfying number of songs in the system Different algorithms 3

Figure 1: Overview of desired evaluations

4.2 communicating the design

4.2.1 System overview

BitTorrent Network

User

Search Network

Figure 2: An image describing the system on a very high level

The diagram in figure 2 explains how the user will be simulta-
neously communicating with the BitTorrent Mainline-DHT and the
DHT that we must create between the users of our system to facilitate
searching. When a user searches for a song, We have to communicate
with the peers of our custom overlay network to find the song if it is
not present in the local database, and afterwards with the BitTorrent

network to actually download the file. The peers of our own search
network also have to communicate with the BitTorrent network, as
they have to crawl and listen to the network as a way of generating
their own database. As mentioned, we seek to create a fully decen-
tralised system, as such the peers we insert into the BitTorrent net-
work can not all write to a centralised database, as this would create
a tracker-like situation. Because of this, we have to let each peer of
the search network gain their own understanding of what is in the
BitTorrent network.

Additionally, to implement the fuzzy matching or full-text search
for songs in our search network we expect to implement an overlay
network similar to Cubit.

12 design and methodology

4.2.1.1 Lower level explanation

We want to implement a system where we insert a certain number
of nodes – as determined through testing – into the Mainline-DHT.
The purpose of these nodes is to passively listen whenever another
peer on the DHT either announces that they have a specific torrent or
calls GET_PEERS for a specific infohash; in both cases we will save the
specific infohash to a database. An indexer connected to the database
will look up the infohashes in the network as they are discovered,
gathering metadata about the corresponding torrent such as name,
content and known trackers. The indexer will use an extension to
the BitTorrent protocol known as BitTorrent Enhancement Proposal 9,
which allows for torrent metadata exchange between peers, allow-
ing us to gather metadata about a torrent using only a few kilobytes
of bandwidth. Each user of our system will run multiple indexers
concurrently, quickly building an index of available torrents and as-
sociated metadata. Allowing the users of the user-search network to
search each others’ databases will result in a fully decentralised sys-
tem. To begin with, nodes in the user-Search network will only be
able to search their own database, however if time allows for it, we
will extend the system to be able to flood the search network in an
attempt to find specific files. If we have further time, a full text search
will be implemented, inspired by the aforementioned system, cubit,
but this will be left to further work initially.

4.2.2 Use cases

4.2.2.1 Searching for a song

The sequence diagram in 3 explains how the system reacts to a user
searching for a song. The user initially asks the user-search network
– here called Silverstream-DHT – if they know any torrent hashes for
the specific song. The peer network responds with potential hashes
and the user selects the preferred song among the results. To ensure
we follow the standards and are able to seed back what we leech, the
work of actually downloading the torrent is delegated to the LibTor-

rent framework. LibTorrent, however, will only be responsible for
the actual BitTorrent protocol itself; we will inject known seeders
into the framework using our own Kademlia implementation. In the
end, an mp3 or some other music file is returned to the user. Addition-
ally, the job of playing the various music formats is delegated to mpv,
as the details of this process is irrelevant in this course.

4.2.2.2 Indexing

The indexer is responsible for populating the database by download-
ing metadata about the infohashes we have gathered, thereby linking
the title of the song, to information about the specific torrent, such

4.2 communicating the design 13

User

SilverStream-DHT LibTorrent CrawlerNode Mainline-DHT

search(full_text)

:torrent hashes

download(hash)

get_peers(hash)

get_peers(hash)

:peers

:peers

download() :mp3

:mp3

Figure 3: Sequence diagram explaining the process of searching for a song.
While the diagram shows an mp3, the indexer supports a wide
range of different audio formats.

Database

Indexer

LibTorrent CrawlerNode Mainline-DHT

get_unindexed()

:hash

get_metadata(hash)

get_peers(hash)

get_peers(hash)

:peers

:peers

download_metadata(hash, peers) :

metadata

:metadata

insert(hash, file_list)

Figure 4: A sequence diagram explaining the process of indexing

as the infohash and the peers who seed it. Through this database,
we can allow users in our search network to look up songs based on
keywords and find the correct torrent.

5
I M P L E M E N TAT I O N

Our system primarily consists of four parts; 1) Crawler nodes, which
passively listen in on the Mainline-DHT, 2) an indexer, whose purpose
is to download the metadata about the torrents the crawler nodes find
and populate the database and 3) the downloading and streaming
module.

5.0.0.1 Kademlia implementation

Our Kademlia implementation, which drives the crawler nodes, has
been designed to allow us to quickly alter the behaviour to accommo-
date different strategies in regards to the evaluation. As an example,
we can specify exactly how many crawler nodes we wish to insert into
the Mainline-DHT, how the nodes’ IDs are chosen, as well as how in-
fohashes should be saved. The strategy for determining when to save
an incoming infohash is a reaction to a BitTorrent Extension Pro-
posal, stating that infohashes should be obfuscated unless the asked
node is close enough to the target to realistically hold information
about it. This proposal was made to specifically prevent the type of
passive listening we are trying to do. Because most BitTorrent soft-
ware is based on the open source LibTorrent library, we were able to
implement an algorithm which attempts to guess when an infohash
is obfuscated based on request, destination and our own node-id.

Our strategy for generating the node-id consist of splitting the id-

space in a number of sub-intervals equal to the number of nodes
which are to be inserted into the Mainline-DHT. We then uniformly
select each node-id from one of these sub-intervals. We theorise this
should ensure an even distribution of node-ids and thus allow the
nodes to be inserted into as many different buckets as possible.

Our implementation fully conforms to the specification as laid out
by BitTorrent Extension Proposal 5, including the ability to announce
our own IP and port to an infohash. While this is not particularly use-
ful for crawling the DHT, we believe it could become important for
future work, as it could serve as a way to bootstrap our own overlay
network without relying more centralised seed nodes. Specifically, we
could chose a fixed 160-bit string all Silverstream clients would an-
nounce their address to, allowing discovery of other nodes in a fully
decentralised manner.

15

16 implementation

5.0.0.2 Indexer implementation

The indexer is implemented as a sqlite database. We chose this
database engine because it is lightweight, does not require additional
software, and supports full text searching by default. The indexer
runs a number of worker processes in an event loop, continually
pulling out an unindexed infohash and associated peer-list from the
database. For each infohash, it requests the metadata of the torrent file
from the peers in the peer-list, as described in the sequence diagram
in figure 4. Once the metadata has been retrieved, the indexer will
clean the file names and insert it into the database, creating a search-
able database, mapping keywords to infohashes. If the torrent con-
tains an album or file-tree of multiple files, each file path is cleaned
and combined to allow the user to search for any song in the album,
as well as albums themselves. Additionally, the indexer will filter any
files that are not audio files, such as .mp4 or .mov.

5.0.0.3 LibTorrent

LibTorrent is a popular torrent framework which forms the basis of
most torrent programs such as Deluge and qBittorrent. Using a pre-
existing library ensures that we will be participating properly in the
swarm, seeding back what we download. LibTorrent allows us to im-
plement partial downloading, such that we can download a single file
or track from an entire album. Furthermore, by utilising the sequen-
tial downloading feature of LibTorrent, which ensures the content of
the file is downloading in correct order, we can begin audio playback
before the file has fully finished downloading – essentially enabling
music streaming with a permanent buffer. Note, however, that some
music formats does not support playback of a partially downloaded
file. For this reason, we have developed a heuristic to determine when
a song ready for playback that takes into account the limitations of
the audio format. The calculations also include some estimates on the
bit-rate of different audio formats, allowing us to begin playback of a
compressed mp3 sooner than a lossless flac, for example. These calcu-
lations are based the current download rate, the remaining download
time, and estimations of bit-rate and average song duration. These fea-
tures help minimise the playback-delay experienced by the end-user,
allowing for a smoother experience. To further decrease the delay, we
also immediately connect to peers we know about from the crawl-
ing of the DHT; if these peers do not provide a satisfactory download
speed, we will request more peers from one of our DHT crawler nodes.
To increase lookup performance, this node is selected as the closest
to the torrent’s infohash, since nodes in Kademlia know more about
their immediate neighbourhood.

implementation 17

TorrentDatabase

TorrentClient

- LibTorrent

IndexerCrawler

RoutingTable

Player

- MPV

DHT-Node

1..*

Figure 5: Overview of the implementation. The Player and TorrentClient

objects use a limited set of functions from the MPV and LibTorrent

libraries, respectively.

5.0.0.4 Final system overview

The diagram in figure 5 detail how the main components of Silver-
stream are connected. The command-line interface has been inten-
tionally left out, since including it would be messy as it talks to most
of the components, allowing the user to control them. Note that the
crawler contains many DHT Kademlia nodes; the diagram depicts a
single one with its routing table and knowledge of the single torrent
database, which is shared among all components.

When the user requests playback of a specific song from an info-
hash the CLI queries the Player component, which in turn starts a
download in the TorrentClient. The player will continuously query
the torrent client for its download status until it meets the require-
ments for playback as per our heuristic, as previously detailed.

While BitTorrent Extension Proposal 5 goes into great detail how
DHT nodes should communicate, it is vague on how node should be-
have locally. For this reason, we have chosen to follow the Kademlia

paper closely, taking special care to follow the advice given in the

18 implementation

implementation-section, which, among other things, describe how to
increase the performance by utilising a replacement cache.

5.0.0.5 Conclusion on implementation

Although we did not fully realise the desired design, we have built
a system on which we are capable of evaluating the majority of our
tests. We successfully implemented a custom Kademlia node that can
communicate with the mainline DHT, we built an indexer that asyn-
chronously and efficiently fetches metadata, allowing users to per-
form full text searches, and we have a custom torrent client tailored
for music streaming based on the LibTorrent framework, which al-
lows sequential as well as partial downloads.

5.0.1 Further work

Future work could consist of implementing a full-text search capable
user search network based on Cubit, as explained in chapter 2. The
addition this network would make it possible for us to evaluate algo-
rithms for calculating distances from keywords but also key phrases.
The latter is more difficult, since the obvious choice would be the
Levenshtein distance for keywords, however this isn’t defined for key
phrases.

6
E VA L U AT I O N

We here list our two main hypothesis’, which we wish to evaluate, as
well as the results of the tests we performed to do this evaluation.

6.1 playback should begin within reasonable time

In an effort to precisely define "reasonable time", we asked users to
compare our system to other popular streaming platforms, specifi-
cally Spotify and Apple Music. We found that the centralised solutions
would begin playback almost immediately, while our system would
generally take between 5 and 10 seconds to start playback, depend-
ing on the file type and popularity of the torrent. In general, users did
prefer the faster playback for the first song, however, when enqueue-
ing the next song in most cases users did not report any annoyances
with our system. In some cases, however, we did find that the system –
due to its reliance on the BitTorrent network and its seeders – would
stall either from the very beginning or halfway through downloading
a song.

By starting the playback before the files had fully downloaded us-
ing our heuristics, we managed to significantly cut down waiting time
in most cases. Unfortunately, all downloads are still reliant on the
availability of seeders, and as such we found that the time of day and
nationality of torrent would sometimes play a crucial role. As an ex-
ample, we found that Russian Top-lists were very well-seeded during
the day, while downloading late in the evening would sometimes fail.
Therefore, to accomplish an evaluation of the general playback delay,
we chose torrents that were both international and somewhat popular
to make it more likely that it would be well-seeded.

As our database only contains a mapping from songs to infohashes,
when a user selects a song for playback, the system must re-download
the relevant metadata even though it has already fetched it as part of
the indexing process. Instead, we test if it provides any significant
speedup in the playback delay to cache the .torrent files themselves
as well. Our hypothesis is that it should result in a speedup equal to
the time it takes to perform a successful metadata exchange.

6.1.1 Evaluation and results

Our hypothesis was confirmed, as we, on average, were able to start
playback one second earlier with the .torrent file cached. However,

19

20 evaluation

With .torrent file Without .torrent file

With streaming 08.05 seconds 09.75 seconds

Without streaming 17.1 seconds 18.05 seconds

Table 1: Table describing the average playback delay of randomly selected
songs from international torrents.

while the process of saving the metadata to a .torrent file only took
1.4ms on average for the indexer, the caching of a large number of
.torrent files do take up quite a bit of space. As of performing this
evaluation, we have 11.083 .torrent files in our index, taking up a
total of 420MiB distributed over 126.257 songs, leading to an average
song taking up 3.5KiB of space in .torrent files. However, as shown
in table 1, the playback delay can be decreased by roughly 25% by
not having to fetch the metadata for every playback. We conclude
that the metadata exchange protocol takes on average one second
to complete; a second that constitutes a major portion of the total
delay when streaming is enabled, and thus caching the .torrent file
may be a worthwhile investment for many users. As this is a time
versus space trade-off, we implemented a switch that allows the user
to choose on system start up.

Additionally, we observed that .flac files take orders of magnitude
longer to download than ordinary .mp3 files. This issue became obvi-
ous when we performed the tests without the streaming-feature en-
abled. In general, .flac files took on average 25 seconds to fully com-
plete. As all experiments throughout our evaluation were performed
on both .mp3 and .flac files, this is what caused the average playback
delay to increase as much as it did. On the other hand, the difference
between streaming and non-streaming .mp3 files were much less, as
these files were generally not more than a few megabytes in size. Fur-
thermore, the difference between .torrent and non-.torrent in the
case without streaming was negligible, as we yet again had to wait
for .flac files to fully download, this completely overshadowed the
time it took to download the metadata.

6.2 we should be able to build a database of torrents

reasonably quickly

We wish to gather a database of all popular songs for the user to
search through. To accomplish this, we have a few different variables
we can change, including the number of crawler nodes and the node-

id generation algorithm. We expect the number of torrents found to
scale linearly with the number of peers we insert into the Mainline-

DHT, and we expect an algorithm that chooses node-IDs such that
they are spread throughout the ID space to perform better than a
uniformly random one.

6.2 we should be able to build a database of torrents reasonably quickly 21

6.2.1 Evaluation and results

To find the best combination of the variables, we established seven dif-
ferent servers all running with a different number of crawler-nodes,
in the same geographical region at the same time, due to the time-
sensitive nature of the Mainline-DHT network.

0 10 20 30 40
Hours

0

10,000

20,000

30,000

40,000

50,000

To
rre

nt
 H

as
he

s

512 nodes
256 nodes
128 nodes
64 nodes
32 nodes
16 nodes
8 nodes

0 10 20 30 40
Hours

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

Pe
er

s

Figure 6: The number of found torrent hashes and peers in routing table as
a function of the number of crawler nodes.

0 20 40 60 80
Hours

0

10,000

20,000

30,000

40,000

50,000

To
rre

nt
 H

as
he

s

Distributed ID selection (512 nodes)
Uniform ID selection (512 nodes)

0 20 40 60 80
Hours

0

100,000

200,000

300,000

400,000

500,000

Pe
er

s

Peers
Unique peers

Figure 7: The number of found torrent hashes and (unique) peers as a func-
tion of the number of crawler nodes, using two different strategies
for generating node IDs.

As mentioned in related work, some effort has been put in to de-
termining the appropriate number of nodes to insert to optimise the
number of discovered torrents. However. as we did not have the com-
pute power to run 32.000 nodes, we had to stop at 512, which is al-
ready cutting it close to malfunctioning, as is seen in figure 6. Because
of this, our initial hypothesis about hashes scaling with the amount of
nodes, ends up being incorrect. However, we estimate that the server
running 512 nodes would catch up eventually, as it quickly overtakes
the server running 256 nodes in the number of known peers. The

22 evaluation

malfunctioning was largely due to a bottleneck on the CPU of the
server, and we estimate that running the experiments on more pow-
erful servers would result in more consistent results.

Apart from these issues, our hypotheses is correct, as the number
of torrent hashes found clearly scales well with the number of nodes
initiated. Additionally, we find that the number of peers in the rout-
ing table turns out to be logarithmic. This means we could essentially
have saved CPU cycles by not adding any more peers after a cer-
tain timestamp. By looking at the right graph of figure 6, we can see
that the server running with 128 nodes almost performs as well as
the server running with 256 nodes, while the server with 128 nodes
knows half as many peers. This leads us to conclude that we could
have stopped adding peers to the routing table on the server with 256

nodes, almost instantly, which would have freed up CPU cycles for
this server. We can not exclude that the performance for the server
with 256 nodes, is not due to hardware limitations as well, however
we hypothesise that if this is the issue, freeing up CPU cycles by
adding peers to the routing table less aggressively could have greatly
benefited this server.

Figure 7 confirms our hypothesis that an algorithm that chooses
node-IDs such that they are spread throughout the ID space performs
better than a uniformly random one; in particular, we notice that
the number of nodes present in both routing tables after 90 hours
is almost exactly the same, while, more importantly, the number of
unique peers is significantly higher in the system running the dis-
tributed ID-selection algorithm. This is expressed in the left-hand
graph, which shows that the number of found torrents is significantly
higher in the system running this algorithm.

7
C O N C L U S I O N

We have created a fully decentralised music streaming platform, Sil-
verstream, which is capable of streaming directly from the Mainline-

DHT. To accomplish this, we have implemented a Mainline-DHT crawler
with a custom Kademlia protocol, a framework built on top of LibTor-
rent and an indexer, using the aforementioned LibTorrent frame-
work, to built a full text search-able database over all the songs we
know of. We have provided a concise description of which compo-
nents communicate together and how these individual components
have been built. We have avoided going into too much technical detail,
as we deemed this unnecessary for the understanding of the system
as a whole.

We have experimented with different ways of implementing the
Mainline-DHT crawler, by varying how its nodes have their node-ids
determined and how many nodes it should have. We found that the
way of generating node-ids in general performed better, when com-
pared to randomly selecting the node-ids. Additionally, we found
that there is a linear correlation between the number of nodes the
crawler has and how many .torrent files it finds.

We also experimented with the implementation of the LibTorrent

framework and found that while being able to stream music, contrary
to having to wait for the download to finish, yields a significantly
faster playback in general, the gain from it is much higher when the
music quality is higher, e.g. for .flac files over .mp3 files.

Furthermore, we tested how the indexer should function and made
an argument for why someone might apply the switch to save all
the .torrent files, as the indexer has to fetch the metadata for each
infohash regardless, whenever it wishes to index a file. The main point
is, that we see it saves approximately 25% time in regards to playback,
when we tested it on a bunch of random files existing in the Mainline-

DHT.

23

B I B L I O G R A P H Y

[1] Scott A. Crosby and Dan S. Wallach. An Analysis of BitTorrent’s
Two Kademlia-Based DHTs. url: https://scholarship.rice.edu/
bitstream/handle/1911/96357/TR07- 04.pdf?sequence=1&

isAllowed=y.

[2] Guy Douglas. Copyright and Peer-To-Peer Music File Sharing: The
Napster Case and the Argument Against Legislative Reform. 2004.
url: http://www.murdoch.edu.au/elaw/issues/v11n1/douglas111.
html.

[3] Stephanie Mlot. ’Popcorn Time’ Is Like Netflix for Pirated Movies.
Tech. rep. PCMAG, 2014. url: https://uk.pcmag.com/internet-
3 / 10462 / popcorn - time - is - like - netflix - for - pirated -

movies.

[4] Andrew Loewenstern & Arvid Norberg. DHT Protocol. Bittor-
rent.org, 2008. url: http://bittorrent.org/beps/bep_0005.
html.

[5] Ghulam Memon & Reza Rejaie. Large-Scale Monitoring of DHT
Traffic. url: https://www.usenix.org/legacy/events/iptps09/
tech/full_papers/memon/memon_html/.

[6] Wikipedia contributors. Countries blocking access to The Pirate Bay
— Wikipedia, The Free Encyclopedia. [Online; accessed 4-November-
2018]. 2018. url: https://en.wikipedia.org/w/index.php?
title = Countries _ blocking _ access _ to _ The _ Pirate _ Bay &

oldid=864920733.

[7] Scott Wolchok and J. Alex Halderman. Crawling BitTorrent DHTs
for Fun and Profit. url: https://www.usenix.org/legacy/event/
woot10/tech/full_papers/Wolchok.pdf.

25

https://scholarship.rice.edu/bitstream/handle/1911/96357/TR07-04.pdf?sequence=1&isAllowed=y
https://scholarship.rice.edu/bitstream/handle/1911/96357/TR07-04.pdf?sequence=1&isAllowed=y
https://scholarship.rice.edu/bitstream/handle/1911/96357/TR07-04.pdf?sequence=1&isAllowed=y
http://www.murdoch.edu.au/elaw/issues/v11n1/douglas111.html
http://www.murdoch.edu.au/elaw/issues/v11n1/douglas111.html
https://uk.pcmag.com/internet-3/10462/popcorn-time-is-like-netflix-for-pirated-movies
https://uk.pcmag.com/internet-3/10462/popcorn-time-is-like-netflix-for-pirated-movies
https://uk.pcmag.com/internet-3/10462/popcorn-time-is-like-netflix-for-pirated-movies
http://bittorrent.org/beps/bep_0005.html
http://bittorrent.org/beps/bep_0005.html
https://www.usenix.org/legacy/events/iptps09/tech/full_papers/memon/memon_html/
https://www.usenix.org/legacy/events/iptps09/tech/full_papers/memon/memon_html/
https://en.wikipedia.org/w/index.php?title=Countries_blocking_access_to_The_Pirate_Bay&oldid=864920733
https://en.wikipedia.org/w/index.php?title=Countries_blocking_access_to_The_Pirate_Bay&oldid=864920733
https://en.wikipedia.org/w/index.php?title=Countries_blocking_access_to_The_Pirate_Bay&oldid=864920733
https://www.usenix.org/legacy/event/woot10/tech/full_papers/Wolchok.pdf
https://www.usenix.org/legacy/event/woot10/tech/full_papers/Wolchok.pdf

	Abstract
	Contents
	1 Introduction
	2 Related Work
	2.1 Preliminaries
	2.1.1 DHT
	2.1.2 mainline-DHT
	2.1.3 Kademlia

	2.2 Related work

	3 Analysis
	4 Design and Methodology
	4.1 Design of the system as well as the evaluation
	4.1.1 Evaluations and testing

	4.2 Communicating the design
	4.2.1 System overview
	4.2.2 Use cases

	5 Implementation
	5.0.1 Further work

	6 Evaluation
	6.1 Playback should begin within reasonable time
	6.1.1 Evaluation and results

	6.2 We should be able to build a database of torrents reasonably quickly
	6.2.1 Evaluation and results

	7 Conclusion
	Bibliography

