Worst svm ever
This commit is contained in:
parent
8cf08d6719
commit
98c154771a
BIN
server/nightr/strategies/nightness_classifier.pkl
Normal file
BIN
server/nightr/strategies/nightness_classifier.pkl
Normal file
Binary file not shown.
|
@ -6,10 +6,11 @@ import json
|
|||
import numpy as np
|
||||
|
||||
|
||||
from server.nightr.strategies.strat_utils import write_json
|
||||
from .strat_utils import write_json
|
||||
from ..util import Context, Prediction
|
||||
|
||||
|
||||
def find_data(time):
|
||||
def write_data(time):
|
||||
write_json("https://portal.opendata.dk/api/3/action/datastore_search?resource_id=2a82a145-0195-4081-a13c-b0e587e9b89c", "parking_aarhus", time)
|
||||
|
||||
def load_data():
|
||||
|
@ -18,7 +19,7 @@ def load_data():
|
|||
Y = []
|
||||
|
||||
for filename in glob.glob("parking_aarhus*"):
|
||||
p_class = '2330' in filename
|
||||
p_class = '2235' in filename
|
||||
|
||||
with open(filename) as file:
|
||||
data = json.load(file)
|
||||
|
@ -32,13 +33,26 @@ def load_data():
|
|||
|
||||
def train():
|
||||
X, Y = load_data()
|
||||
classifier = svm.SVC(C=10, gamma=0.01, probability=True)
|
||||
classifier = svm.SVC(gamma=0.01, probability=True)
|
||||
classifier.fit(X, Y)
|
||||
joblib.dump(classifier, "nightness_classifier.pkl")
|
||||
|
||||
def predict(X):
|
||||
classifier = joblib.load("nightness_classifier.pkl")
|
||||
prob = classifier.predict_proba(X)
|
||||
prob = classifier.predict_proba(np.array(X).reshape(1, -1))
|
||||
return prob[0, 1]
|
||||
|
||||
train()
|
||||
|
||||
def perform_svm_pred(context: Context) -> Prediction:
|
||||
p = Prediction()
|
||||
data = requests.get('https://portal.opendata.dk/api/3/action/datastore_search?resource_id=2a82a145-0195-4081-a13c-b0e587e9b89c')
|
||||
|
||||
records = data.json()['result']['records']
|
||||
X = [house['vehicleCount'] / house['totalSpaces'] for house in records]
|
||||
X = [min(x, 1) for x in X]
|
||||
p.reasons.append("Since we only have two data points")
|
||||
p.reasons.append("Since our only two data points have 11 dimensions")
|
||||
p.reasons.append("Since we are using a SVM")
|
||||
|
||||
p.probability = predict(X)
|
||||
return p
|
||||
|
|
Loading…
Reference in a new issue