This commit is contained in:
Alexander Munch-Hansen 2019-04-06 17:38:23 +02:00
commit 6a0d0863b2
8 changed files with 119 additions and 40 deletions

4
.gitignore vendored
View file

@ -519,3 +519,7 @@ tags
.history
# End of https://www.gitignore.io/api/vim,emacs,android,pycharm+all,androidstudio,visualstudiocode,python,java,angular
# Custom
requests_cache.sqlite

View file

@ -1,4 +1,5 @@
import inspect
import logging
import statistics
from dataclasses import asdict
from datetime import timedelta
@ -7,21 +8,24 @@ from typing import List
import requests_cache
from flask import Flask, jsonify
from .strategies import dmi, steam, miloStrats
from .strategies import miloStrats, iss, cars_in_traffic, tide_strat, upstairs_neighbour
from .util import Context
logger = logging.getLogger(__name__)
app = Flask(__name__)
requests_cache.install_cache("requests_cache.sqlite", expire_after=timedelta(minutes=10))
requests_cache.install_cache("requests_cache", expire_after=timedelta(minutes=10))
strategies = {
# name: (weight, probability function)
"dmi": (0.5, dmi.probability),
"steam": (1.0, steam.probability),
"australia": (1.0, miloStrats.australiaStrat),
"camera": (1.0, miloStrats.camImgStrat),
"tv2news": (1.0, miloStrats.tv2newsStrat)
"tv2news": miloStrats.tv2newsStrat,
"australia": miloStrats.australiaStrat,
"camera": miloStrats.camImgStrat,
"iss": iss.night_on_iss,
"cars_in_traffic": cars_in_traffic.cars_in_traffic,
"tide": tide_strat.is_tide,
"upstairs_neighbour": upstairs_neighbour.check_games,
}
@ -31,17 +35,18 @@ def probabilities():
context = Context(**phone_data)
predictions: List[dict] = []
for name, (weight, strategy) in strategies.items():
for name, strategy in strategies.items():
try:
prediction = strategy(context)
except Exception as e:
print(f"Strategy {name} failed: {e}")
logger.warning("Strategy %s failed: %s", name, e)
logger.exception(e)
continue
predictions.append({
"name": name,
"description": inspect.getdoc(strategy),
"weight": weight,
"weighted_probability": prediction.probability * weight,
"weight": prediction.weight,
"weighted_probability": prediction.probability * prediction.weight,
"night": prediction.probability > 0.5,
**asdict(prediction),
})

View file

@ -1,12 +0,0 @@
from ..util import Context, Prediction
def probability(context: Context) -> Prediction:
"""
The data from DMI.
"""
p = Prediction()
p.probability = 0.7
p.reasons.append("It is raining in Tønder")
return p

View file

@ -0,0 +1,89 @@
import itertools
import logging
from datetime import datetime
from math import pi, sqrt, sin, cos, atan2
import pytz
import requests
from timezonefinder import TimezoneFinder
from ..util import Context, Prediction
logger = logging.getLogger(__name__)
tf = TimezoneFinder(in_memory=True)
def night_on_iss(context: Context) -> Prediction:
"""
It is night if it is night on the ISS and it is currently orbiting above us.
"""
p = Prediction()
if not context.flat_earth:
iss_position = requests.get("http://api.open-notify.org/iss-now.json").json()["iss_position"]
the_iss = "The ISS"
iss_position_description = "on board the ISS"
else:
p.reasons.append("The ISS is (obviously) located in Hollywood")
the_iss = "Hollywood"
iss_position = {'latitude': 34.092808, 'longitude': -118.328659} # Hollywood
iss_position_description = "in the Hollywood studio"
phone_position = context.position
# Calculate ratio: a number between 0 and 1 saying how close we are to the ISS
distance = haversine(iss_position, phone_position)
max_distance = 40075 / 2 # the furthest you can be from any position is half of the earth's circumference
ratio = distance / max_distance
# We're in the same "timezone" as the ISS if we're on the same half of the earth
on_iss_time = ratio < 0.5
side = "same" if on_iss_time else "other"
p.reasons.append(f"{the_iss} is {int(distance)} km away, so we are on the {side} side of the earth.")
for i in itertools.count(1):
iss_tz = tf.closest_timezone_at(lng=float(iss_position["longitude"]),
lat=float(iss_position["latitude"]),
delta_degree=i)
if iss_tz is not None:
break
iss_time = datetime.now(pytz.timezone(iss_tz))
iss_night = 6 < iss_time.hour > 22
# iss_night on_iss_time night
# 0 0 1
# 0 1 0
# 1 0 0
# 1 1 1
night = iss_night == on_iss_time
iss_time_description = "nighttime" if iss_night else "daytime"
time_description = "nighttime" if night else "daytime"
p.probability = float(night)
p.reasons.append(f"It is {iss_time_description} {iss_position_description}.")
p.reasons.append(f"Therefore, it must be {time_description} where we are.")
return p
def haversine(pos1, pos2):
"""
Distance between two GPS coordinates.
https://stackoverflow.com/a/18144531
"""
lat1 = float(pos1["latitude"])
long1 = float(pos1["longitude"])
lat2 = float(pos2["latitude"])
long2 = float(pos2["longitude"])
degree_to_rad = float(pi / 180.0)
d_lat = (lat2 - lat1) * degree_to_rad
d_long = (long2 - long1) * degree_to_rad
a = pow(sin(d_lat / 2), 2) + cos(lat1 * degree_to_rad) * cos(lat2 * degree_to_rad) * pow(sin(d_long / 2), 2)
c = 2 * atan2(sqrt(a), sqrt(1 - a))
km = 6367 * c
return km

View file

@ -1,18 +1,18 @@
from datetime import datetime
from pathlib import Path
import requests
import cv2
from pytz import timezone
from ..util import Context, Prediction
#from server.nightr.util import Context, Prediction
def camImgStrat(context : Context) -> Prediction:
"""
The contents of the camera image
"""
img = cv2.imread('night.jpg',0)
img = cv2.imread(str(Path(__file__).parent.joinpath("night.jpg")), 0)
average = img.mean(axis=0).mean(axis=0)
print(average)
p = Prediction()

View file

@ -1,12 +0,0 @@
from ..util import Context, Prediction
def probability(context: Context) -> Prediction:
"""
How many players are currently online on Steam.
"""
p = Prediction()
p.probability = 0.2
p.reasons.append("CSGO has more than 10.000 online players")
return p

View file

@ -15,4 +15,5 @@ class Context:
@dataclass
class Prediction:
probability: float = 0.5
weight: float = 1.0
reasons: List[str] = field(default_factory=list)

View file

@ -1,7 +1,11 @@
Flask==1.0.2
requests==2.21.0
requests-cache==0.4.13
Flask
requests
requests-cache
pytz
beautifulsoup4
pandas
opencv-python
timezonefinder
scikit-learn
html5lib
xlrd