More strats
This commit is contained in:
parent
b6c361de97
commit
366b2c3845
4 changed files with 125 additions and 75 deletions
34
server/nightr/strategies/cars_in_traffic.py
Normal file
34
server/nightr/strategies/cars_in_traffic.py
Normal file
|
@ -0,0 +1,34 @@
|
|||
import requests
|
||||
|
||||
from server.nightr.util import Prediction, Context
|
||||
|
||||
|
||||
def scrape_traffic(context: Context) -> Prediction:
|
||||
r = requests.get('https://portal.opendata.dk/api/3/action/datastore_search?resource_id=b3eeb0ff-c8a8-4824-99d6-e0a3747c8b0d')
|
||||
night_avr = 3.38
|
||||
day_avr = 6.98
|
||||
|
||||
p = Prediction()
|
||||
|
||||
data = r.json()
|
||||
sum = 0
|
||||
len = 0
|
||||
for lel in data['result']['records']:
|
||||
sum += lel['vehicleCount']
|
||||
len += 1
|
||||
curr_avg = len / sum
|
||||
|
||||
diff = day_avr - night_avr
|
||||
|
||||
if curr_avg >= day_avr:
|
||||
p.reasons.append(f"Because {curr_avg} cars are driving around Aarhus right now and {day_avr} is the expected number for daytime")
|
||||
p.probability = 0.0
|
||||
elif curr_avg <= night_avr:
|
||||
p.reasons.append(f"Because {curr_avg} cars are driving around Aarhus right now and {night_avr} is the expected number for nighttime")
|
||||
p.probability = 1.0
|
||||
else:
|
||||
p.reasons.append(f"Because average for daytime is {day_avr} and average for nighttime is {night_avr}, but the current average is {curr_avg}")
|
||||
res = 1 - curr_avg / diff
|
||||
p.probability = res
|
||||
|
||||
return p
|
|
@ -4,60 +4,10 @@ import pandas as pd
|
|||
import urllib.request
|
||||
from datetime import datetime, timedelta
|
||||
import json
|
||||
|
||||
def determine_month():
|
||||
ds = pd.read_excel(urllib.request.urlopen('https://sundogbaelt.dk/wp-content/uploads/2019/04/trafiktal-maaned.xls'))
|
||||
|
||||
cur_year = 2019
|
||||
amount_of_cur_year = sum([x == cur_year for x in ds['År']])
|
||||
|
||||
cur_year_total = sum(ds['Total'][1:amount_of_cur_year+1])
|
||||
last_year_total = sum(ds['Total'][amount_of_cur_year+1:amount_of_cur_year+13])
|
||||
|
||||
return (12/(last_year_total//cur_year_total))+1
|
||||
|
||||
def is_tide():
|
||||
month = determine_month()
|
||||
tide_data = requests.get('https://www.dmi.dk/fileadmin/user_upload/Bruger_upload/Tidevand/2019/Aarhus.t.txt')
|
||||
lines = tide_data.text[570:].split('\n')
|
||||
tuples = [x.split('\t') for x in lines]
|
||||
lel = [[datetime.strptime(x[0], '%Y%m%d%H%M'), x[1]] for x in tuples[:-1]]
|
||||
|
||||
matches = [[x[0], int(x[1])] for x in lel if x[0].month == month]
|
||||
|
||||
all_the_data = requests.get('https://www.dmi.dk/NinJo2DmiDk/ninjo2dmidk?cmd=odj&stations=22331&datatype=obs')
|
||||
current_water_level = json.loads(all_the_data.content)[0]['values'][-1]['value']
|
||||
|
||||
# Generate average of when the water is high
|
||||
last_match = matches[0]
|
||||
moments = []
|
||||
for idx, water_level in enumerate(matches[1:]):
|
||||
#print(last_match[1], water_level[1])
|
||||
diff = abs(last_match[1]) + abs(water_level[1])
|
||||
time_diff = (water_level[0] - last_match[0]).seconds
|
||||
|
||||
average_inc = time_diff/diff
|
||||
average_delta = timedelta(seconds=average_inc)
|
||||
|
||||
if last_match[1] < 0: # Increasing
|
||||
time = last_match
|
||||
while time[1] != current_water_level:
|
||||
time[0] += average_delta
|
||||
time[1] += 1
|
||||
from server.nightr.strategies.strat_utils import determine_month
|
||||
|
||||
|
||||
elif last_match[1] > 0: # Decreasing
|
||||
time = last_match
|
||||
while time[1] != current_water_level:
|
||||
time[0] += average_delta
|
||||
time[1] -= 1
|
||||
|
||||
last_match = water_level
|
||||
moments.append(time[0])
|
||||
|
||||
night = sum([1 for x in moments if 6 >= x.hour or x.hour >= 22])
|
||||
|
||||
return night / len(moments)
|
||||
|
||||
|
||||
def tmp():
|
||||
|
@ -66,32 +16,13 @@ def tmp():
|
|||
json.dump(r.json(), f)
|
||||
|
||||
|
||||
def read_tmp():
|
||||
with open('traffic_data_13_23.json') as f:
|
||||
data = json.load(f)
|
||||
number = sum([cars['vehicleCount'] for cars in data['result']['records']])
|
||||
print(number / len(data['result']['records']))
|
||||
|
||||
|
||||
def scrape_traffic():
|
||||
r = requests.get('https://portal.opendata.dk/api/3/action/datastore_search?resource_id=b3eeb0ff-c8a8-4824-99d6-e0a3747c8b0d')
|
||||
night_avr = 3.38
|
||||
day_avr = None
|
||||
|
||||
data = r.json()
|
||||
sum = 0
|
||||
len = 0
|
||||
for lel in data['result']['records']:
|
||||
sum += lel['vehicleCount']
|
||||
len += 1
|
||||
curr_avg = len / sum
|
||||
|
||||
diff= day_avr - night_avr
|
||||
|
||||
if curr_avg >= day_avr:
|
||||
return 0.0
|
||||
elif curr_avg <= night_avr:
|
||||
return 1.0
|
||||
res = 1 - curr_avg / diff
|
||||
|
||||
assert(res < 1 and res > 0)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def scrape_weather():
|
||||
|
@ -112,3 +43,5 @@ def scrape_dmi_aarhus():
|
|||
return 0.0
|
||||
#adak_latest_time, adak_latest_temp_aarhus = max(adak_timeserie.items(), key= lambda x : x[0])
|
||||
|
||||
|
||||
read_tmp()
|
14
server/nightr/strategies/strat_utils.py
Normal file
14
server/nightr/strategies/strat_utils.py
Normal file
|
@ -0,0 +1,14 @@
|
|||
import pandas as pd
|
||||
import urllib.request
|
||||
|
||||
|
||||
def determine_month():
|
||||
ds = pd.read_excel(urllib.request.urlopen('https://sundogbaelt.dk/wp-content/uploads/2019/04/trafiktal-maaned.xls'))
|
||||
|
||||
cur_year = 2019
|
||||
amount_of_cur_year = sum([x == cur_year for x in ds['År']])
|
||||
|
||||
cur_year_total = sum(ds['Total'][1:amount_of_cur_year+1])
|
||||
last_year_total = sum(ds['Total'][amount_of_cur_year+1:amount_of_cur_year+13])
|
||||
|
||||
return ((12/(last_year_total//cur_year_total))+1), cur_year_total, last_year_total
|
69
server/nightr/strategies/tide_strat.py
Normal file
69
server/nightr/strategies/tide_strat.py
Normal file
|
@ -0,0 +1,69 @@
|
|||
import datetime
|
||||
import json
|
||||
import calendar
|
||||
import requests
|
||||
|
||||
from server.nightr.strategies.strat_utils import determine_month
|
||||
from server.nightr.util import Context, Prediction
|
||||
|
||||
|
||||
def is_tide(context: Context) -> Prediction:
|
||||
"""
|
||||
Determine whether or not it is night in Aarhus based no the current water level and which month we are in, based
|
||||
on number of cars driving across The Storbæltsbro.
|
||||
"""
|
||||
|
||||
p = Prediction()
|
||||
|
||||
month, cur_year_total_cars, last_year_total_cars = determine_month()
|
||||
|
||||
p.reasons.append(f"Because the month is f{calendar.month_name[month]}")
|
||||
p.reasons.append(f"Because the number of cars having driven on the Storbæltsbro is f{cur_year_total_cars}")
|
||||
p.reasons.append(f"And because the number of cars having driven over it in the last year is f{last_year_total_cars}")
|
||||
|
||||
|
||||
|
||||
tide_data = requests.get('https://www.dmi.dk/fileadmin/user_upload/Bruger_upload/Tidevand/2019/Aarhus.t.txt')
|
||||
lines = tide_data.text[570:].split('\n')
|
||||
tuples = [x.split('\t') for x in lines]
|
||||
lel = [[datetime.strptime(x[0], '%Y%m%d%H%M'), x[1]] for x in tuples[:-1]]
|
||||
|
||||
matches = [[x[0], int(x[1])] for x in lel if x[0].month == month]
|
||||
|
||||
all_the_data = requests.get('https://www.dmi.dk/NinJo2DmiDk/ninjo2dmidk?cmd=odj&stations=22331&datatype=obs')
|
||||
current_water_level = json.loads(all_the_data.content)[0]['values'][-1]['value']
|
||||
|
||||
# Generate average of when the water is high
|
||||
last_match = matches[0]
|
||||
moments = []
|
||||
for idx, water_level in enumerate(matches[1:]):
|
||||
#print(last_match[1], water_level[1])
|
||||
diff = abs(last_match[1]) + abs(water_level[1])
|
||||
time_diff = (water_level[0] - last_match[0]).seconds
|
||||
|
||||
average_inc = time_diff/diff
|
||||
average_delta = datetime.timedelta(seconds=average_inc)
|
||||
|
||||
if last_match[1] < 0: # Increasing
|
||||
time = last_match
|
||||
while time[1] != current_water_level:
|
||||
time[0] += average_delta
|
||||
time[1] += 1
|
||||
|
||||
|
||||
elif last_match[1] > 0: # Decreasing
|
||||
time = last_match
|
||||
while time[1] != current_water_level:
|
||||
time[0] += average_delta
|
||||
time[1] -= 1
|
||||
|
||||
last_match = water_level
|
||||
moments.append(time[0])
|
||||
|
||||
night = sum([1 for x in moments if 6 >= x.hour or x.hour >= 22])
|
||||
|
||||
p.reasons.append(f"And because the number of times the water is at the current level at nighttime is: {night}, compared to the total amount of times in {calendar.month_name[month]}, being {len(moments)}")
|
||||
|
||||
p.probability = night / len(moments)
|
||||
|
||||
return p
|
Loading…
Reference in a new issue