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Abstract
Cryptocurrencies allow purely peer-to-peer online payments without a trusted
third party. In this project, we develop a cryptocurrency system based on the
Bitcoin protocol. The solution distinguishes itself from others by disincentivising
centralisation and improving security through a simple architecture, preventing
attacks conceivable in prominent systems today. The only centralised component
of the design is shown to be of minor significance for the operation of the
system, and algorithms that draws inspiration from the field of engineering are
demonstrated to provide an almost constant block time, improving the stability
of the system. The result is a scalable and reliable cryptocurrency that is almost
completely decentralised.
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1 Introduction
This report seeks to find the necessities of a cryptocurrency by studying the
original implementation; Bitcoin. The report documents the process of im-
plementing and designing a simple alternative to Bitcoin, namely, the Aucoin
cryptocurrency. The main focus is to make Aucoin a truly distributed cryptocur-
rency, that is testable, scalable, and does not rely on any centralised services.

1.1 References and Literature
The references used in this work can be found in the References section at
the end of the report. Before continuing, we want to discuss the academic
challenges of finding literature in the area of cryptocurrencies. Due to the nature
of cryptocurrencies, not many academic writings provide the required level
of detail to develop, implement, and document a cryptocurrency. The main
source of literature used in the report are found on online discussion boards
and forums, where users and developers alike discuss both high-level concepts
and low-level implementation details. It is important to note that while many
references are from these online forums, the vast majority of information was
extracted from posts authored by core developers or stakeholders of prominent
cryptocurrencies like Bitcoin. For this reason, we do not see an immediate
problem using these resources as a source for technical and conceptual choices
regarding Aucoin.

2 Introduction To Blockchains
A blockchain is essentially a slow distributed database. It consists of several
components which we will briefly introduce:

Network The blockchain functions in the context of a network of users, that
can be either public or private. A private network is typically focused
on removing market friction in different sectors of industries, and allows
for fine grained access control. A public network, on the other hand, is
especially suited for cryptocurrencies, as it allows anyone to participate in
the network.

Nodes We will in this report address users in the network simply as nodes,
though in reality there can be many different type users of a blockchain.
When we refer to nodes, we indicate a physical instance capable of particip-
ating in the blockchain network.

Shared ledger The core of the blockchain is a shared ledger, which is the
component responsible for collecting blocks of transactions in a consistent
immutable state.

2.1 Types and Differences
Before beginning, let us first introduce the different types of blockchains. We
will cover permission-less and permission-based blockchains. We then discuss
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why we choose to focus on implementing a public permission-less blockchain.

2.1.1 Permission-less vs. Permission-based Blockchains

Blockchains enhance trust between networks. It does so by being a shared
distributed ledger which provides the means of recording, applying, and
tracking transactions in a network. One might think of blockchain as an
operating system with several applications, like Bitcoin, Ethereum, Litecoin,
etc. When we speak of blockchains, we easily confuse two types of access
control; permission-less and permission-based. Both are decentralised peer-
to-peer networks, where each node maintains a shared ledger of append-only
transactions. By applying a consensus protocol to the ledger, the nodes maintain
a collection of valid transactions guaranteeing immutability of the ledger. The
sole exception between the two types of access control is whether it enables the
creation of members-only networks and ability to prove membership. Through
IDs and permissions, permission-based networks offer management of the level
of detail available for specific users when browsing transactions. It also allows
improved auditability by having a shared ledger serving as a single source
of truth. Though sharing this property with the permission-less blockchain,
it offers more fine grained control. The performance of the permission-less
blockchain suffers at scale, as the consistency, as well as the immutability of the
ledger, depend solely on computationally expensive tasks. A permission-based
blockchain does not depend on such tasks to be practical, and can therefore
scale more easily. For this reason, permission-based blockchains are generally
preferred in the enterprise [11, p. 6-18].

2.1.2 A Public Permission-less Blockchain

One might argue that a private permission-based blockchain is suitable for
problems considering enterprise solutions. But what we intend with this project
is to develop a blockchain implementing a cryptocurrency called Aucoin, and
study the aspects of it through experiments. Therefore, we choose to use a public
permission-less blockchain. This implies that any user will be able to connect to
the system, publish new transactions, as well as engage in the consensus protocol
with equal limitations. This has some challenges that need to be considered:
We will need a stable and scalable interface for distributing the shared ledger,
publishing transactions, and keeping everything consistent. Also, we need a
consensus protocol that guarantees the immutability of the shared ledger.

2.1.3 Consensus

In networks where blockchain users are not known, we cannot trust them. The
solution is to build the security of the system around not needing to trust
them. This is the job of the consensus protocol; it ensures that every transaction
appended to the blockchain is valid. It is a common agreement that every user
of the blockchain must follow.
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Proof of Work Originally proposed by Satoshi Nakamoto in 2008, the Proof of
Work (PoW) consensus protocol, is a computationally hard task that needs to be
solved in order to push new transactions to the blockchain. The task is to find
a value, such that when hashed with a predefined hash function, it is below a
given target. This value can easily be checked with a single hash. Usually, as in
the case of Bitcoin, PoW is accomplished using blocks of transactions. That way,
if an adversary wants to change transactions in the blockchain, it is impossible
without having to redo the work of all the preceding blocks. This is an extremely
expensive task, virtually rendering the blockchain immutable [16].

Proof of Stake PoW has one major downside; it requires constant computa-
tional power to ensure the security of the network, creating a massive waste of
resources. The common alternative to PoW is Proof of Stake (PoS). PoS applies
the user’s aggregated transaction value or balance, to determine who is selected
to create a new block. Whoever has the highest stake in the network, will have
the greatest chance of creating a new block. PoS builds on the assumption that
users who have more to lose by attacking the network will generally refrain
from doing so [11].

The reader will later discover that Aucoin implements PoW as part of the
consensus protocol. The reason is that PoW is one of the simplest and most
well-documented consensus protocols, and it aligns nicely with the time span
and expectations of a bachelor project. The theoretical aspects of PoW includes
protection through signatures and computations with hash functions, which we
detail later.

3 Introduction to Aucoin
Aucoin is a cryptocurrency that implements a pubic permission-less blockchain.
It is build on simplifications of the Bitcoin protocol with the purpose of research-
ing how to build a scalable and reliable cryptocurrency system. The main focus
is to implement and experiment upon a modular blockchain that disincentivises
mining pools and offers stable difficulty adjustment to arrive at an average block
mining time of 60 seconds. Aucoin is modularised in 8 modules which are all
outlined with dependencies in figure 3.1.

4 Transactions
Transactions allow users to spend coins by transferring ownership from one user
to another. In this system, users are identified by their public key, by which the
ownership of the coins is reassigned to the receiver’s public key. A transaction
contains at least one input and one output; Each input references the output of a
previous transaction, thereby spending it. The outputs assign these coins to one
or more receivers. In this way, transactions form the vertices in a graph with
edges between inputs and outputs, representing the change of ownership [16].
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Core
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Wallet Validator 
(consensus) 

CLI

Network Miner

Mempool

Figure 3.1: A diagram illustrating the relationship of the 8 modules of Aucoin. Notice
the 3-layered architecture; outer interface layer with CLI, a core layer, and a storage layer.

The first transaction in this chain, however, does not reassign coins from
a previous output. This special transaction, called the coinbase transaction,
generates new coins and awards them to miners; this is how new coins are
introduced into the system. Coinbase transactions are very different from
standard transactions, and as such they are discussed separately in section 6.1
while the mining process itself is detailed in section 6.

All transaction outputs that have not yet been referenced by any inputs are
called unspent transaction outputs (UTXOs). The sum over the value of all UTXOs
for a given public key is denoted its balance. In this way, transactions not only
allow transferring coins, but actually define the notion of owning coins, by
which ownership entails controlling the private key associated with a public
key of an UTXO.

An illustration of a chain of transactions can be seen in figure 4.1. Note that
there are no connections between inputs and outputs within a transaction; this
means that it is impossible to define and trace a single “coin”.

4.1 Scripts
In Bitcoin, inputs reference previous outputs by the previous transaction and
index fields. These fields contain the hash, or unique identifier, of the previous
transaction the output is contained in, as well as its position within the output
vector, respectively. Outputs consists of a value, denoting the number of coins
it will be worth when spent. Both inputs and outputs have a script; when
validating the transaction, the two are combined and evaluated. If the script
returns true, the input is authorised to spend the output and the transaction is
valid [43]. Though not Turing-complete, the Bitcoin scripting system allows the
construction of many different types of transactions. For example, it is possible
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Figure 4.1: A chain of transactions. The inputs of the coinbase transaction does not
reference a previous output, and the outputs which have not yet been referenced by any
input are unspent. The difference between the implied value of all inputs and the value
of all outputs in a transaction is the transaction fee.

to construct an output in such a way that it can be spent by anyone calculating
the solution to any pure function, such as a hash or encryption function [33].

In the first release of the Bitcoin protocol, coins were paid directly to the
user’s public key. That is, the script field contained a script that would return
true for any person able to produce a signature using the corresponding private
key. Scripts of this type are known as pay-to-pubkey. Today, the most typical
Bitcoin transaction is the pay-to-pubkey-hash transaction [13]. The output scripts
of these transactions contain a hash or “address” of a public key. To redeem
the output, the receiver must construct an input script which both provides a
signature using the corresponding private key, but also proves that the public
key indeed hashes to the receiving address [42].

The obvious disadvantage of pay-to-pubkey is that the sender needs to know
the public key of the receiver in advance. Conversely, pay-to-pubkey-hash
allows users to send coins to shorter, more memorable addresses. Moreover,
if the user never reuses an address, they do not have to publish their public
key until the coins are spent. Allowing the public key to be withheld is crucial
for the security of the system, since quantum computers are able to derive the
private key from an ECDSA public key [21]. By utilising pay-to-pubkey-hash,
however, the security relies not only on the ECDSA scheme, but also the hash
function, which is considered to be relatively secure against attack by quantum
computers [2].

4.2 Signing Transactions
The signature in the input scripts of a pay-to-pubkey-hash Bitcoin transaction
provides authenticity that the receiver of the referenced output is the one
spending it [42]. Each signature contains a sighash flag, specifying which parts
of the transaction it signs [37]. This not only protects the transaction from
modification, but also allows the creation of transactions constructed using a
combination of inputs signed by different users, where each party signs only
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a part of whole transaction, allowing other parts to be changed without their
involvement [33].

Bitcoin currently supports three base sighash flags [19]:

SIGHASH_ALL This is the default flag, which indicates that the previous
transaction and index fields of all inputs as well as the value and script fields
of all outputs are signed. Additional transaction metadata like the header
is also signed, effectively protecting everything except the input scripts
from modification [19]. Note that the input scripts are not included in the
signature, since that would involve constructing a signature which signs
itself [33].

SIGHASH_NONE Signs all of the inputs like SIGHASH_ALL, but none of the
outputs. This allows anyone to change where the coins are sent [19].

SIGHASH_SINGLE This flag is similar to SIGHASH_ALL, except that the only
output which is signed is the one with the same index as this input. This
enables others to append outputs, as long as the original single output is
unaltered [19].

In addition to thebaseflags, Bitcoin also supports amodifier called sighash_anyonecanpay.
This additional flag causes only the single input to be signed, and can be com-
bined with any of the above, creating three new combined types [33]. For
example, the combined flag sighash_all|sighash_anyonecanpay signs all of the
outputs, but only this one input, allowing anyone to add additional inputs. This
could be used to organise crowdfunding campaigns; in this case, the transaction
is only valid if enough inputs are added to cover the value of the outputs, so
nothing is transferred if the campaign does not reach its goal [19].

4.3 Transactions in Aucoin
Unfortunately, implementing a scripting language similar to the one found in
Bitcoin is outside the scope of this project. Instead, we have focused on support-
ing the most commonly used transaction – the pay-to-pubkey-hash transaction –
as well as the default sighash flag: sighash_all. As shown in figure 4.2, these
constraints simplify the structure of transactions significantly: Instead of an
output script, outputs simply delegate the value to an address as defined by
definition 4.1.

Definition 4.1 (Address). The Aucoin address of a public key pk is defined as

address(pk) � sha256(pk)

The validation engine replicates the steps performed by a pay-to-pubkey-hash
signature script by checking the validity of the signature using the accompanying
public key according to the sighash_all rules. The output script is replaced with
a check that verifies that the public key matches the address of the referenced
output, as defined indefinition 4.1. Together, these checks substitute the scripting
language found in Bitcoin, but it must be stressed that they only compose a
small subset of the validation checks necessary to ensure the security of the
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Figure 4.2: The difference between a Bitcoin transaction [20] and an Aucoin transaction.
The open padlock represents an unsigned field.

system. For example, to prevent double spending the validator also checks that
each output is referenced by an input at most once.

4.4 Transaction Malleability
As stated previously, the signature scripts in a Bitcoin transaction are not part of
the data that is signed, since doing so would result in a circular dependency.
The same applies to signatures in an Aucoin transactions, as symbolised with
an open padlock in figure 4.2. In both Bitcoin and Aucoin, however, the script
and signature, respectively, contributes to the transaction’s hash, which is used
to uniquely identify it when referencing previous outputs from an input [19]. In
the case of Bitcoin, the flexibility of the signature scripts allow an adversary to
make non-functional modifications to a transaction without rendering it invalid,
for example by adding a NOP opcode to the script [42, 19]. It should be noted
that this does not change what inputs the transaction uses, nor what outputs it
pays, so the coins will still go to their intended recipient [45]. It does, however,
mean that the computed hash of the transaction changes, which causes it to
have a different unique identifier than the creator expected.

As a practical example, consider an attacker requesting a withdrawal from
a Bitcoin exchange. The exchange would create a transaction and publish it
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on the network. By utilising transaction malleability, an attacker might then
be able to trick poorly implemented payment tracking, since it may appear
that the transaction has disappeared from the network. This would cause the
exchange to believe that the transaction has failed, crediting the amount back
to the attacker’s account, effectively doubling the balance [10]. Because of this
possibility, best practices dictate that Bitcoin transactions should be tracked by
the transaction outputs as opposed to its hash, and that reissued transactions
spend the same outputs as the previous one, invalidating the original one [19].

Interestingly, the simplicity of Aucoin transactions solve the malleability
problem; since the only unsigned field is the signature, no modifications can be
made without invalidating it.

4.5 Fee
For the transaction to be considered valid, the sum of output values must be
less than or equal to the sum of output values referenced by the inputs. The
difference between these two values is called the transaction fee and is formally
defined as follows:

Definition 4.2 (Transaction fee). For a transaction tx with input vector vin
of inputs and output vector vout of outputs, the transaction fee is defined as
follows [18]:

fee(tx) �
∑

input∈vin

input.output.value −
∑

output∈vout

output.value

Note that an input does not define a value. Instead, the value of the output it
references must be retrieved to calculate the fee. According to the consensus
rules, the fee must be non-negative in order for the transaction to be considered
valid. The fee of a given transaction is paid to the miner who includes it in a
block; the specific process is examined in section 6.

Due to the above definition, the referenced outputs are always spent in their
entirety. This means that the sender must include an additional output sending
excess coins back to themselves to avoid paying the difference in fees. This
technique is known as returning the change, analogous to the change received
when paying with cash [16].

4.5.1 Privacy and security considerations

In Bitcoin, it is recommended [32] to generate a fresh address for every transaction
that requires change. This is due to the fact that all Bitcoin transactions are
public, allowing anyone to monitor transaction amounts. In theory, generating
a fresh change address effectively conceals which of the transaction outputs
are intended for the actual receiver and which is the change [22]. In practice,
however, the user may have to use multiple previous change outputs to cover
the amount of a transaction in the future. This allows an observer to determine
with high confidence that the addresses are under the control of a single user,
deducing their status as change addresses. Thus, the intended recipient and
amount of previous transactions is only concealed as long as the change outputs
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Figure 5.1: The structure of an Aucoin block. The transactions contribute to the hash
indirectly through the Merkle root.

cannot be correlated. Over time, however, the change technique will cause the
user’s coins to disperse into UTXOs of increasingly smaller value, until at some
point it becomes impossible to construct any transactions without spending
multiple change outputs in conjunction [28].

Another consideration is that reusing the same change address would reveal
the public key upon spending any of the outputs. This decreases the security of
the sytem in a post-quantum world, as per the discussion in section 4.1.

5 Blocks
In the previous section, we explored how the inputs and outputs of transactions
form a chain, redefining ownership of coins. So far nothing prevents the owner
of an output from transferring it to multiple receivers without their knowledge.
This is the infamous double-spending problem, which was solved by Satoshi
Nakamoto in 2007 with the introduction of the blockchain [16].

The blockchain works as a shared database of all previous transactions,
allowing users to agree on a single history. In this way, users are aware of all
transactions performed in the system, by which it is possible to confirm the
absence of double-spending transactions. The blockchain is constructed by
collecting transaction into blocks, which form a chain by a process similar to
that of a linked list [16]. We denote the list of contained transactions the “body”
of the block. Furthermore, the block also includes a header with additional
metadata, and they are uniquely identified by the hash of this header, which is
constructed in such a way that it depends on the list of transactions. For this
reason, the hash encapsulates all the data in the block [20, 39]. The contents of
an Aucoin block is visualised in figure 5.1 and described next.

Version number The version number is a header field consisting of an integer
that indicates which block validation consensus rules to follow. It allows the
introduction of changes to the protocol that are incompatible with previous
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versions. It is important that this field is part of the data that constitutes the
block’s hash to prevent an adversary from altering it, causing the nodes to apply
a weaker set of validation rules to it.

Previousblock’s hash This header field contains the hash value of the previous
block this one builds upon. The field is responsible for connecting the blocks
into the block tree that is commonly known as the blockchain. In this way, the
block tree consists of a number blocks organised into branches. The consensus
rules ensures that exactly one of these branches is regarded as the main branch,
thereby determining the blocks that make up Aucoin’s public ledger. The
algorithm responsible for this is described in section 9.2.

Since each block header contains the hash of the previous one, no block
can be modified without also modifying every subsequent block that builds
upon it. In this way, the amount of work needed to modify a particular block
in the branch increases with every new block added to it, thus protecting the
blockchain from tampering. The consensus rules ensure modifying a block
in the blockchain requires on average as much computing power as the entire
network expended between the time of the original block and the present time.
This is only feasible for an adversary controlling a majority of the network’s
computing power and is what is known as a 51 percent attack [38].

Merkle Root Hash The Merkle root is a single hash derived from the hashes
of all transactions contained within the block, thereby ensuring that none of
the transactions can be modified without modifying the block header. As the
body of the block consists solely of the list of transactions, the Merkle root hash
ensures that the block’s hash encapsulates all the data it consists of.

Definition 5.1 (Merkle Tree). A Merkle tree is a complete binary tree equipped
with a function hash, conforming to the requirements set forth by the common
definition of a cryptographic hash function. For the two child nodes nle f t and
nri ght , of any interior node, nparent , the assignment Φ is required to satisfy

Φ(nparent) � hash(Φ(nle f t)| |Φ(nri ght))

where | | means concatenation [26].

In our context, the bottom row of the Merkle tree is constructed using the
hashes of the transactions in the block. Each pair of leaves is concatenated
together and hashed to form a second rowof hashes in accordancewith definition
5.1. If there are an odd number of nodes in any row of the tree, the last node is
pairedwith itself, i.e. Φ(nparent) � hash(Φ(nle f t)| |Φ(nle f t)). The process repeats,
creating additional rows, until only one hash remains; the Merkle root hash [20,
39]. An example construction of a Merkle tree can be seen in figure 5.2.

One of the benefits of using a Merkle tree rather than a simple hash list,
where each transaction hash is simply concatenated, is that it allows efficient
membership proof for transactions in the block. In other words, the data
structure allows clients to verify that a transaction is part of a given block in
time log2(N), for a tree with N leaves, as opposed to time proportional to the
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merkel root

txa txb txc

Figure 5.2: Merkle Tree Construction. Transaction txc is paired with itself, since there
are an odd number of nodes in the first row of the tree.

number of leaves as is the case of a hash list [26]. Furthermore, because the
block’s transactions are only hashed indirectly though the Merkle root hash,
the header always has the same length, which means that hashing a block
with one transaction takes the same amount of work as hashing a block with
thousands [31].

Timestamp This header field contains a Unix epoch timestamp, recording the
UTC timewhen theminer beganworking on generating the block. It is important
to note that this timestamp is reported by the miner itself, and that individual
timestamps are not reliable since we cannot achieve global, synchronised time
in a distributed system (Orlandi [17]).

The block timestamps are primarily used by the difficulty adjustment al-
gorithm to keep the block time at the desired interval. Even though the algorithm
takes the inherent imprecision into account, the timestamp still needs to approx-
imate the correct time with reasonable accuracy. To achieve this, the validation
engine rejects incoming blocks with timestamps that are either more than 10
minutes in the future, or before or equal to themedian timestamp of the previous
11 blocks. Note that the timestamp is restricted according to the median of the
previous blocks in contrast to a period of time in the past. This allow nodes to
validate any block in the blockchain regardless of the current time and enables
nodes to catch up to the rest of the network by processing blocks much later
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than they were initially propagated.

Target The header contains a target as defined in the following definition:

Definition 5.2 (Target). The target is a 256-bit unsigned integer threshold which
a block’s header hash must be equal to or below in order for that block to be
valid.[18, 20]

Definition 5.3 (Difficulty). The difficulty is a measure of how difficult it is to
find a hash below a given target. Given the target t of a block b we calculate the
difficulty of the block by

diff(b) � 2256

t
which is the expected/average number of attempts that were necessary to mine
the block [14, 47].

From definition 5.2 and 5.3 it is clear that there exists a linear relationship
between the target and the difficulty. Indeed, when the target changes by p
percent, the difficulty is adjusted by the inverse, −p percent. Because of this
close relationship, the two terms are often used interchangeably in the literature.

Blocks are generated on a somewhat regular interval thanks to the difficulty
adjustment algorithm discussed in section 7, which actually adjusts the target.

Signature&Public key The signature and public key fields of the block’s header
are used in the mining process and discussed in detail in section 6.

Transactions list While the aforementioned fields compose the block’s header,
the transactions list can be considered the body of the block. The reason for this
partition is that the transactions only contribute to the block’s hash indirectly
through the Merkle root hash as discussed above. There are no constraints on
the ordering of transactions in the list, but once it has been chosen by the miner
it cannot be altered without invalidating the Merkle root hash. Furthermore,
while there is no upper bound on the number of transactions in the list, it is
limited by the consensus rules, which state that a block can have a maximum
size of 100 KiB.

This limit was chosen based on the Bitcoin block size limit of 1 MB [20],
which has been subject to much controversy [30]: To allow for more transaction
per second, certain Bitcoin users have been advocating for an increased block
size [29]. Of course, the disadvantage of this proposal is that the cost of running
a node would increase comparatively, and since the security of the system relies
on most users being honest Nakamoto [16], increasing the block size could affect
user security [41]. To encourage decentralisation we have chosen the relatively
moderate block size limit of 100 KiB in Aucoin.

6 Mining Blocks
Since there is no central authority to issue coins into circulation, a way to
distribute them is needed. Aucoin follows a similar approach to Bitcoin, in that
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coins are introduced through coinbase transactions [43]. The miner construct
blocks containing a coinbase transaction as the first in the transactions list,
awarding new coins to itself.

6.1 Coinbase Transactions
As shown in section 4, transaction chains reassign ownership of coins from a
previous output. The first transaction in every chain is a coinbase transaction; it
does not reassign value, but instead starts a new chain. In Aucoin, the coinbase
transaction is a simplified version of a standard transaction; it allows only one
input and one output. The value of the output in the coinbase transaction
reward the miner of the block 100 Aucoins, as a reward for having expended
CPU-time mining it. In addition, the miner must collect the transaction fees of
the transactions included in the block. If the value of the output is not equal to
the sum of these two amounts, the block is considered invalid.

The single input of the coinbase transaction is a special coinbase input. The
public key and signature fields of the standard input are replaced with a coinbase
and height field. The coinbase field serves no purpose, but allows miners to
include 100 arbitrary bytes in the block. In Bitcoin, the field is often used to
trigger a new block hash through theMerkle tree [31]. The height field is required
to counter an attack involving the construction of multiple transactions with
identical hashes.

First, notice that it is difficult for an attacker to control the hash of a regular
transaction, since it includes references to previous transactions, possibly outside
the attacker’s control. Now consider a coinbase transaction; it does not reference
any previous outputs in the input, and as such, all fields are either static, or can
be chosen freely by the miner. This allows an attacker to mine two different
blocks with duplicate coinbase transactions, and by building chains from these,
create duplicate standard transactions as well [46]. This possibility can create
major problems for the clients, since transaction chains build on the assumption
that transaction hashes are unique. In fact, multiple Bitcoins have become
unspendable, and thus lost forever, due to this attack [9]. By requiring that
the height of the block containing the coinbase transaction is included within,
transaction uniqueness is enforced [1].

6.2 The Mining Process
Mining blocks is the process of continuously hashing the block header until
the hash value is below or equal to that of the block’s target. To achieve a
different hash at each iteration, a section of the header needs to be changed
between attempts. In Bitcoin, this section is a nonce that starts at 0 and is
incremented for each attempt [34]. At first, this approach might seem to generate
the same sequence of block hashes for every participating miner. It is extremely
unlikely, however, for two miners to have the same Merkle root hash because the
first transaction in each of their blocks assign the block reward to themselves,
ultimately resulting in different hashes. [31]

It is important to note that a miner cannot begin working on a block in
advance; this is due to the fact that each block contains the header of the
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previous.

6.2.1 Mining Pools

Because it is impossible to mine the next block in advance, all miners on the
network compete to find a satisfactory block hash first. While not having
a significant effect on the expected payout, the variance can be dramatically
decreased if a group of miners pool their resources together in a mining pool,
sharing their processing power and splitting the rewards [35]. Most pool setups
include a coordinator who issues blocks with a target that is easier than the real
difficulty of the network. The members work on the block, sending solutions
back to the coordinator; this allows the members to prove how many resources
they spent working on the problem. If a found hash is low enough to also pass
the real required difficulty, the block is broadcast to the entire network [35].

The blocks issued by the coordinator includes a coinbase transaction that
pays the reward to an address under his control. It is important to note that a
miner cannot award the block reward to itself, because doing sowould invalidate
the solutions sent to the coordinator.

6.2.2 Disincentivising Mining Pools

To disincentivise the use of mining pools, and thereby increase the decentralisa-
tion of the network, Aucoin draws inspiration from a mining algorithm known
as Sign to Mine, pioneered by the cryptocurrency ziftrCOIN [15]. The nonce in
the block header is replaced with an ECDSA signature and associate public key,
resulting in two new block header fields; signature and public key, as per figure
5.1. These fields are similar to those of the transaction inputs, signing all the
header fields except the signature itself. Since both the signature and public key
contribute to the hash of the block, miners iterate by continuously re-signing the
block. Albeit slower than simply incrementing a nonce, the method results in
different hashes in each iteration because each signature must use a new secret
random number in the signature generation process [23].

Pooled mining is disincentivised by introducing two additional consensus
rules; first, the signature must sign the other fields of the header, and secondly,
the signature must be produced using the private key associated with the
address receiving the block reward [15]. Essentially, to carry out the mining
process, the miner must be able to spend the rewards for the mined block. Of
course, pooled mining is still possible, but would require all members to possess
the private key, allowing them to create transactions transferring the entire block
reward to themselves, essentially stealing it. In this sense, pooled mining is still
possible, but disincentivised because each member has to trust the entire group.

6.2.3 Possible Problems Caused By Sign To Mine

While Sign to Mine initially increases the decentralisation of the network, it
reintroduces the problem of large variance in the reward for the miners. This
leads to centralisation, because only miners with enough hashing power to get
regular payouts will be able to mine, since small constant payouts are much
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preferred to the hope of one large reward [5]. Moreover, the system can be
worked around by setting up the pool in such way that each participant mines
blocks using a private key known only by the pool operator and himself. In
this way, it is easy to identify which user stole the coins, and the pool operator
could simply require a deposit equal to the block reward, which could be used
to cover the potential loss [5]. Of course, some cryptocurrencies may offer block
rewards of such high value that very few individuals are able to pay the deposit,
leading to even further centralisation.

6.3 Most Profitable Transactions
Finding the most profitable set of transactions to include in a block is essential
in ensuring the highest possible profit for a miner. Implementing such an
algorithm does not increase the security of the protocol, but instead the incentive
to mine. Miners store broadcast transactions in a pool in memory (mempool).
The miner can chose to include transactions from the mempool arbitrarily, or to
not add any transactions from the mempool at all, including only the coinbase
transaction. Bitcoin clients use heuristics to sort the transactions and pick
those with the highest fee/size ratio. In fact, this is an approximation of a
NP-hard problem known as knap sacking[6, 44]. We will compare two different
algorithms inspired by Bitcoin: The first is a simple algorithm that first excludes
any transactions which depends on another transaction in the mempool. It then
sorts the remaining transactions based on the f ee/size ratio before filling the
block until it is full. We shall now more formally define this simple problem.

Definition 6.1 (Simple most profitable transactions). Given a set of transactions
T, let vi be the fee and wi be the size in bytes of transaction i in T. Let W be
the maximal size of a block. The most profitable transactions problem is then
formally defined as

maximize
|T |∑
i�1

vi xi

s .t .
|T |∑
i�1

wi xi < W and xi ∈ {0, 1}

The above definition omits the case where transactions are dependent upon
each other, which is sometimes a reality in Aucoin. We therefore propose
another algorithm that extends the heuristics of the simple algorithm.

6.3.1 Approximation in Aucion

The basic idea for solving the most profitable transactions problem is to maintain
a list of dependency trees that are constructed in the following way:

• For each transaction tx in the mempool, let tx be the root of a tree.

• Let every transaction that tx depends upon be a child of tx.
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• Repeat the above steps dynamically until a tree has been constructed for
every transaction in the mempool.

The resulting list of trees is sorted by the ratio between the sum of fees and sum of
sizes of each tree. The miner can now fill the block using this list by continuously
adding all transaction from the most desirable tree. If all transactions of a tree
does not fit it is skipped. The process continues until the block is full or we have
no more trees to inspect.

The extended algorithm only visits each transaction once when creating the
trees, and then sorts the list of trees, yielding a running time of O(N log(N)),
where N is the number of transactions in the mempool. Comparing to the
simple algorithm, which also has a running time of O(N log(N)), we simply
add another layer of heuristics on top. This makes it possible for a miner to
include blocks which are dependent on each other, potentially increasing the
block reward.

6.3.2 Comparing the Algorithms

A simulation generating 1000 transactions was used to compare the two al-
gorithms. Figure 6.1 shows the results of the simulation. Notice that when 0%
of the transactions are dependent, the two algorithms yield the same result,
but as the number of dependent transactions grow, the extended algorithm
outperforms the simple one by having a greater total fee. Another important
factor is running time: As shown in figure 6.2, the running time of the extended
algorithm suffers greatly as the number of independent transactions grow. The
experiment shows that the extended algorithm is approximately a factor of 29
times slower than the simple algorithm with the simple algorithm taking 0.093
seconds to assemble the list of transactions versus the extended algorithm at
2.631 seconds.

Figure 6.1: A simulation that compares the simple (red) and extended (green) algorithm
for finding the most profitable set of transactions in the mempool.
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Figure 6.2: This graph compares the running time of the simple (red) and extended
(green) algorithm.

6.3.3 Choosing an Algorithm

The question is then, if one should use the simple or the extended algorithm.
In the case of Aucoin, the extended algorithm was chosen, resulting in more
CPU-time but better profitability when transactions depend upon each other.

7 Difficulty Adjustment
A very important aspect of cryptocurrencies based on PoW is how we adjust
the difficulty of mining new blocks. That is, we do not want miners to be using
too much or too little time and effort mining blocks. In Aucoin, we strive for a
mining time for each block at 60 seconds. In the following section we address
the challenges of obtaining this goal, and derive a solution that proves very
effective at holding the time span of blocks at the desired interval.

7.1 A PID Implementation
Aucoin implements a difficulty adjustment algorithm that adjusts the difficulty
for every new block that is found. It draws inspiration from signal processing
and regulation by using PID Regulation, which we will discuss now.

Definition 7.1 (PID Regulation). Given a signal source s, a target o, and an error
function e(t) � o(t) − s(t), we have an algorithm u which regulates the source s
such that it limits the error e(t). We define PID Regulation as

u(t) � Kp e(t) + Ki

∫ t

0
e(τ)dτ + Kd

de(t)
dt

,
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where Kp , Ki , Kd ∈ R are constants for the proportional part, the integral part
and the differential part of the expression, hence the name PID [12].

Aucoin uses the PID Regulation algorithm by defining the error function as

e(t) � block_time − (tbn − tbn−1)

where tbn is a timestamp for block bn , tbn−1 is a timestamp for block bn−1,
and block_time is the desired time span between mined blocks. Instead of
integrating from time 0 till time t, Aucoin simplifies this and integrates only
over the last 300 blocks. One problem is then to figure out fitting parameters Kp ,
Ki , and Kd . The consequence of each parameter is discussed by conducting the
following experiments. In the first experiment the hash rate is kept constant,
and in the second it is variable, but both simulate a network of miners.

7.1.1 Previous Work

The use of PID regulation for difficulty adjustment in blockchains is somewhat
limited. As shown in the next experiment, PID regulation faces a number of
challenges when used with blockchains, which might explain why the method
is not widely used. Even though few cryptocurrencies implement algorithms
based on PID regulation, developers have shown interest in the idea. For
example, a member of the ZCash community conducted experiments on the use
of PID regulation in the cryptocurrency ZCash [49]. His results showed that PID
regulation algorithms are generally not better than other difficulty adjustment
algorithms. However, the experiments were conducted using heavily modified
implementations of PID regulation with several signal processing methods
applied, which might explain why the results where sub-optimal [49]. The
takeaway from these experiments is that needless complexity can cause more
harm that good. For this reason, great care have been taken to not repeat these
mistakes in the implementation of the Aucoin difficulty adjustment algorithm.
We propose an experiment that focuses on a testing a simple implementation of
PID regulation using a Monte Carlo simulator.

7.1.2 Aucoin PID Regulation Implementation

Because substantial changes in the difficulty between two blocks is undesired,
the PID algorithm of Aucoin has a factor of 1

10.000 applied to the result of the PID
calculation to limit the rate of change. Algorithm 1 suggests an implementation
of the PID algorithm used in Aucoin.

One problem of the suggested implementation is to figure out parameters Kp ,
Ki , and Kd . Lets discuss the consequences of each parameter by conducting an
experiment: In the experiment we simulate a network of miners, where the hash
rate of the network is simulated using a Monte Carlo simulation as described in
algorithm 2.

The simulation takes as input a mean value µ and a standard deviation σ,
and uses these to create a set of n points that are generated using a normal
distribution. The series of hash rates is then found by multiplying the last
known hash rate with a point from the distributed set. For the actual Monte
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Algorithm 1 PID regulation algorithm used in Aucoin

def requ i red_ ta rge t ( block , prev_block , prev_prev_block , k_p , k_d , k_i ) :
# Ca lcu la te e r ro r using the 2 previous blocks
error , timespan = ca l cu l a t e _ e r r o r ( prev_block )
l a s t _ e r r o r , las t_ t imespan = ca l cu l a t e _ e r r o r ( prev_prev_block )

# Ca lcu la te fu ture pred i c t i ons using slope of e r ro r
de r iva t i ve = ( e r ro r − l a s t _ e r r o r ) / timespan

# Calcu la te past e r ro r s
i n t e g r a l = sum( g e t _ l a s t _ e r r o r s ( 3 0 0 ) )

# Ca lcu la te the PID regu la t ion
pid = ( k_p ∗ e r ro r + k_i ∗ i n t e g r a l + k_d ∗ der iva t ive )/10000

# Apply to the previous t a rge t
new_target = prev_targe t ∗ (1 − pid )
re turn new_taret . to_bytes ( )

Algorithm 2 Monte Carlo simulation of hash rates

hash_rates = [100 _000 ]
changes = numpy . random . normal (mean , std , n ) + 1
for x in changes :

hash_rates . append ( x ∗ changes [ −1] )
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Carlo simulation used to generate a series of hash rates, the hash rate of Bitcoin
between May 2017 and May 2018 was used. In this period the mean was
µ � 10.31 · 10−4% and the standard deviation was σ � 24.64 · 10−2% over a one
minute window [4].

7.1.3 Experiment

Choose Kp � 10, Ki � 0, kd � 0. Now run the simulator and consider the results
in figure 7.1 on page 23. The observations show that the difficulty is adjusted
fast, and the average block time span is very close to the target, even though
the hash rate changes dramatically. The geometry of the difficulty has many
spikes, indicating that the PID regulator may be overfitting the input signal.
The histogram of figure 7.1 also reflects this, as it has a very high probability
mass centred around the Poisson distribution. There are 2 major spikes in the
histogram, which also indicates overfitting. The calculated mean is 59.59 and
the standard deviation is 8.91, which is close to the desired mean of 60. The
standard deviation is also around that of the Poisson distribution

√
60 � 7.746.

This looks good, but there is still room for improvement.
The way to improve the result is to change the parameters of the PID

algorithm. It is preferred to have a smoother difficulty adjustment such that we
do not adjust the difficulty too much when being victim of noise and stochastic
variables. Now, choose Kp � 2, Kd � 0, Ki � 0.5, and consider the results in
figure 7.2 on page 24. The results show a mean µ � 58.243 and a standard
deviation σ � 11.719. The problems we encountered in the previous experiment,
regarding overfitting and the uneven geometry of the difficulty curve, are now
resolved. We now have a very good fit against the poison distribution, and the
probability mass is very dense, revealing a great fit. The mean is µ � 58.243,
which is a bit worse than figure 7.1, but that is to expected with more generality.
The standard deviation σ � 11.719 is also a bit worse than the first experiment,
but the geometry of the histogram in figure 7.2 is more preferable than that of
figure 7.1, as it has no significant outliers. By applying the integral part of the
PID, we introduce a new problem that is to be seen at around time 30000 in
figure 7.2. The difficulty, as well as the average block time span overshoots the
desired target before returning to it again. This is a consequence of the integral
part, but luckily we can reduce overshooting by using the derivative part of the
PID.

Figure 7.3 is the result of running the simulation with parameters Kp � 2,
Kd � −50, Ki � 0.5. The main thing to notice here, is that the overshooting has
been reduced compared to figure 7.2. The result is visually promising, but once
we analyse the statistics of the result we are not so fascinated compared to the
experiment of figure 7.2. The mean is µ � 58.158 and the standard deviation is
σ � 11.192, which is a poor improvement considered to figure 7.2.

The explanation for why the derivative part of the PID does not deliver on
its promise might be a consequence of the PID algorithm’s simplicity. When
applying the derivative part, we only look at twounique block timestamps, which
are distributed over a Poisson distribution. This makes it absolutely impossible
to say that timestamps between blocks are to be considered precise and correct.
On the contrary, we might have a very high variance when considering such

22



timestamps. This could in turn be reduced by implementing the P and D of the
PID algorithm in another way; for every block we wish to consider, take the
previous k blocks and calculate themean time span. This could effectively reduce
the variance when computing the P and D. We could then discuss whether
to call it a PID algorithm or an III algorithm, as it is simply three averages
over different windows. For now, we keep the PID regulation algorithm as our
difficulty adjustment because it offers sustainable performance and results.

Figure 7.1: PID experiment with Kp � 10, Ki � 0, Kd � 0.
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Figure 7.2: PID experiment with Kp � 2, Ki � 0.5, Kd � 0.

Figure 7.3: PID experiment with Kp � 2, Ki � −50, Kd � 0.5.
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8 Network
Clients of bitcoin use a broadcast network to propagate messages to other peers.
Such messages will include requests for blocks and transactions, actual block
and transaction data, as well as other types of messages [36]. When developing
a cryptocurrency, we want it to be distributed and accessible. In the following
sections we introduce the theory of gossip networks and pandemic messaging
while addressing the challenges of a distributed peer-to-peer network, before
returning to the implementation in Aucoin.

8.1 Gossip Networks
Implementing a distributed peer-to-peer network requires the designer to
consider a number of challenges. If a new cryptocurrency finds traction and
needs to scale, it is of uttermost importance that the network does not fail to do
so at an application level. The currency will undeniably fail if communication
between the peers of the network is not reliable to some extent. For this reason,
Aucoin implements a gossip protocol at the application level for multicasting
data to peers in the network.

Before continuing, we need to discuss the structure of the network, how
peers are connected to each other, and how to ensure that everyone will receive
messages from the network. There are generally two approaches; using an
overlay network that is structured as a tree or using an overlay network that is
structured as amesh. If using a tree, we guarantee that every peer is connected to
the entire network and that there will always be a path from one peer to another
peer. This ensures that every peer can communicate with every other peer.
Multicast messaging is easily obtained by simply recasting a received message to
every connected child or grandparent except the sender. This approach comes
at the cost of building and maintaining the tree. For a cryptocurrency, this is
not very scalable, especially in scenarios where peers disconnect and connect to
the network at will, forcing the tree to be rebuilt needlessly. In addition, while
building the tree might seem easy, building an efficient tree may not be as trivial.
Because of this trade-off, Aucoin instead uses an overlay network structured as
a mesh. With this approach, it is possible for peers to connect and disconnect
at any time, without the need of restructuring the overlay network [27]. This
network structure will be the basis for the discussion for the remainder of this
section.

8.1.1 Pandemic Messaging

One of the reasons pandemics are deadly is because they spreads exponentially;
When one person gets infected, two persons get infected, four persons get
infected, etc. Utilising this property to send messages is precisely what a
multicast pandemic protocol does; though, instead of trying to stop the spread
it is encouraged. So how do we propagate messages in the network in order to
“infect” every node? The solution is to let nodes multicast messages to all its
connected peers, or, ideally, a random selection of these. When a node receives
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a message it forwards it only if it is the first time seeing it [27]. Consider the
following proposition:

Proposition 8.1. Pandemic messaging takes O(lo g(N)) rounds to propagate a single
message to all nodes in a network of N nodes.

Proof. Assume that each node in a network of N nodes is connected to k other
nodes. Whenever a node i wants to broadcast a message to the network, i can
directly message k nodes in one round. Now for the next rounds, every node
who received the message can broadcast it to k nodes. Observe that after n
rounds, the message must have been broadcast to kn nodes. So, after lo gk(N)
rounds, the total number of nodes, who have received the message would
be k lo gk (N) nodes, thus yielding a bound on the number of rounds it takes to
broadcast a message to the network of O(lo g(N)). �

Proposition 8.1 shows that pandemic messaging is fast, but more importantly,
scalable. Aucoin uses pandemic messaging at the protocol level for multicasting
messages and data across the network. In addition, Aucoin utilises gossiping to
limit the amount of traffic the network by only sending blocks and transactions
directly, but instead offering them to the network based on the hashes. In this
way, receivers can choose to either respond with a request or ignore the offer if
they already have received the offered data.

8.2 Message types
As discussed, Aucoin has a set of messages which are broadcast around the
network. The following exhaustive list of message types is what drives the
communication of Aucoin. Every message that is sent through the network has
a message type field equivalent to one of the types in the list below.

Hello TheHellomessage is exchanged between peerswho establish a connection.
The message has a payload consisting of version, your IP, and nonce fields.
The version dictates the protocol version of the peer, if the two versions are
incompatible the peers will disconnect. The field your IP is the IP-address
of the other peer, as seen from the perspective of the sender. The field is
used to discover a client’s own IP-address, even behind firewalls or NATs.
The nonce field is used to check for self connections, and the method for
doing so is described in greater detail in section 8.5.

Peers The Peersmessage is sent after receiving a Peers request or Hellomessage.
The payload of the Peers message is a list of IP-addresses known to the
sender.

Peers offer The Peers offermessage is sent to offer a Peersmessage to the receiver.
A peer will respond with a request only if it does not have the maximum
number of connections already.

Peers request The Peers request message has no payload. It is simply a message
letting the receiver know to send known peers to the sender.
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Block The Block message has a block serialised as JSON in the payload.
Whenever a Block message is received, the receiver broadcasts a Block
offer message based on the block hash to let everyone in the network know
that this block is available in the network.

Block offer The Block offer message has a block hash in its payload, such that
the receiver can search if it has the given block in its blockchain. If not, it
may send a Block requestmessage back to the sender.

Block request The Block request message has a block hash in its payload. The
receiver of the message will respond with a Block message if it has the
given block in its blockchain.

Blocks request The Blocks request message contains a header hash field, which is
used by the receiver to find blocks in the blockchain that is between the
senders header and what the receiver believes to be the current blockchain
header. These blocks are then offered with a Blocks offermessage.

Blocks offer The Blocks offermessage has a list of block hashes in the payload.
This list is used to request blocks by sending a Block requestmessage. The
block hashes list has a limit, so a Blocks requestmessage is sent by the receiver
until no block hashes remain in the list.

Transaction The Transactionmessage has a transaction object serialised as JSON
in its payload. When received, the node broadcasts a Transaction offer to
the network to let every node in the network know that the transaction is
available.

Transaction offer The Transaction offer message has a transaction hash field in
its payload. The receiver of this message will searches its blockchain and
mempool for the transaction, and if it is not found a Transaction request
message is returned to the sender.

Transaction request The Transaction request message has a transaction hash field
in its payload which the receiver uses to reply with a Transaction message.

Ban The Ban message is sent to blacklist a peer, indicating that the counterpart
does not wish to communicate. The message has fields seconds and reason.
The amount of time that the receiver is banned equals the seconds field.

8.3 Bootstrapping and Discovery
When a client wants to join the network for the first time, it needs a way to
discover other peers. The Bitcoin protocol proposes two different bootstrapping
techniques; the first way is to receive a list of seed nodes using a number of
predefined DNS hostnames. The Bitcoin client will send an Address message to
these nodes, which will introduce it the rest of the network by forwarding the
message to other peers, causing them to establish connections to the new client.
If the DNS hostnames fail to resolve the client will fallback to a second bootstrap
technique which involves connecting to a number of hard-coded IP-addresses. It
goes without saying that this technique is much less robust than the first, since
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the list of nodes cannot be updated dynamically without a software update [36].
When the Aucoin client initialises its network it loads in previously known
clients and tries to connect to these. If this list is empty, or every connection
attempt unsuccessful, the client will perform a DNS lookup to the hostname
seed.aucoin.network for nodes to connect to. This makes the DNS lookup the
last resort, as we always try connecting to previously seen nodes first.

Whenever a client establishes a connection to another node, it receives a
list of potential peers to connect to. Even if a node already has the maximum
number of desired connections, it will always send this list to connecting peers
to ensure that the counterpart has someone to connect to. This list will be added
to the client’s set of known peers, and will in turn be broadcast along to other
nodes in the network. If an IP address from the set is unreachable, it will be
removed.

8.4 Rejecting and Banning Connections
There are several reasons for a connection to another node to be rejected: A peer
can be banned if the first message it sends is not a Hello message, if it sends
malformed data, or if the requested part was forced to reject the connection
due to already maintaining the maximum number of desired connections. By
default, a peer is banned for 60 seconds, and if it is following the protocol it will
not try to connect during this interval. Aucoin restricts a peer from connecting to
the same peer twice, as well as restricting connections to itself. Self connections
are detected by comparing the IP-address of the connection with its own address
as reported by the other peers. Additionally, a peer may detect a self connection
by comparing the nonce of the Hello message to its own 32-bit nonce. These two
techniques are discussed next.

8.5 Distinguishing Peers
It is important to be able to detect self connections since we do not want a peer
to unnecessarily broadcast messages to itself. Furthermore, doing so might
mess with the internal events on an application level. Internal events like block
discovery and newly added transactions could interfere with each other if they
are being fired both internally and through the network layer, which might
introduce behaviour which is hard to debug. In this section, we propose two
different solutions to find if a peer is connecting to itself. These methods work
in unison in Aucoin, and are inspired by the implementation of the network
layer of Bitcoin.

8.5.1 IP-address Discovery

The implementation of the original Bitcoin client used public web services to
retrieve its external routable IP-address. The client would connect to two hard-
coded services; checkip.dyndns.org and www.showmyip.com. If either service
returned an IP-address, the node would use the result when broadcasting its
presence to the network [40]. This is not truly a distributed solution, and might
introduce security risk if the operator of any of these services were to return

28



malicious results. Aucoin, instead, seeks to solve the problem of discovering
ones own IP-address in a distributed manner.

The solution we propose works by letting each node send the perceived
address of the other peer through the your ip field on the Hellomessage. Each
node then collects the responses in a map with the sender’s address as the
key. In this way, each peer may only “vote” on one address. To find a node’s
own IP-address, it is sufficient to follow a simple heuristic; let n be the number
of IPs in the map. Now find the most common IP-address among the values.
Denote the number of occurrences k. The own IP of the node can then be
determined with confidence k

n , under the assumption that the majority of peers
in the network are honest.

8.5.2 Nonce Control

Another, perhaps more robust method of detecting connections to oneself, is to
generate a nonce when starting the client. Choose this nonce randomly with
a length of 32 bits. Then, when establishing a connection to other peers with
the Hello message, simply send this nonce in the payload. Now the receiver can
check if the nonce matches its own, and if so, rejects the connection because it.
There is one problem to consider with this approach though. We choose 32 bits
randomly under the assumption that this nonce will be unique on the network.
For a large network, this assumption may not hold, since it may be the case that
multiple peers select the same random 32 bits.

For a network of k peers, the probability of two peers having the same 32 bits
is P(x � y) � k

232 . Furthermore, this does not seem to pose a problem for massive
cryptocurrencies like Bitcoin, which currently has around 10,000 peers [3]. By
using these numbers, the probability of randomly selecting the same nonce for
nodes in a network of such size is 10000

232 � 2.3 · 10−6, which surely is very low.

8.5.3 Network Sniffing

A concern is that an adversary can sniff the data exchanged between peers in a
Hellomessage. One can argue that no adversary can use this data in an attack
which serves to shut out a peer from the network. The reason being that the
protocol is independent of trust between peers individual peers. As such, the
worst an adversary can do is act as someone else by using that peer’s nonce, but
this will not harm the network. An adversary can lie when sending the Hello
message, and give a wrong your IP to a peer. And, if for some reason, the
network consists of more than 50% adversaries who agreed on the same wrong
IP address to send to this peer, it is possible that the peer could be triggered into
thinking that this IP-address belongs to it. But, again, this would in no case be
fatal to the network nor peer, as the peer would still identify when connecting
to itself by other measures as discussed in above.

8.6 Max Peers
Avery important piece of heuristics in theAucoin client is the max-peers variable.
This variable controls how many peers a client can initiate communication with.
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p2:Peer

block_request(block_hash)

return block(block) 

p1:Peer

Symmetrical  
initialization process 
between p1 and p2 

hello(version, your_ip, nonce)

blocks_request(head_hash) broadcast peers_offer

P2P network

blocks_offer(block_hashes) 

block_request(block_hash)

blocks_request(block_hash)

return block(block) 

...blocks_offer sends at
most 100 blocks hashes.
When this is reached, ask
for another list of blocks

with blocks_request.

broadcast block_offer

P2P network

broadcast block_offer

P2P network

Figure 8.1: A sequence diagram of the establishment of a connection between two parties.
The reader should view the sequence diagram as a symmetrical process for both p1
and p2. This means, that while p1 is performing this sequence, p2 is performing the
symmetrical sequence asynchronously.

The default is 4, which, in an experimental setting with small networks, is fine.
In a real scenario, this could be higher. One thing to notice, is that an Aucoin
client can have more connections than the max-peers variable implies. This is
due to heuristics in the network layer. A client should never be selfish and
connect to only the peers he wants to talk to. If this was the case, then 5 peers
could connect to each other and form a densely connected network that no one
else could join. Therefore, the limit of actual connection that can be made to a
client is max-peers · 3, such that there is always twice as many seats for peers
wanting to join the network.

8.7 Initial Block Download
When a peer has established a connection to the network it will receive a Hello
message, as described above. It will then send a Blocks request message, with its
blockchain block header in the payload. This is done to find if the peer is any
blocks behind the current consensus. If it is, it will receive these blocks from
Block messages, and iteratively add these blocks to its blockchain. Every block is
validated during this process to ensure a valid blockchain.

A sequence diagram of the establishment of a connection between to parties
is shown in figure 8.1.
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8.8 Experiments
To verify the implemented network architecture, extensive experimentation
was made. An important benchmark is the the latency and connectivity of the
network. The first experiment we will discuss, serves as argument for why the
network will scale and keep a low latency.

Examine figure 8.2, which is the result of the first experiment where the
latency of transaction transport in networks of different peer sizes was recorded.
This was truly a challenge to implement and to automate. In each iteration,
that is for each network of a given size, a seed node was started and then a
number of non-mining clients was also started. The max-peerswas chosen to
be 4, which means that each peer in the network could obtain up to 12 total
connections. Whenever a client received a new transaction and it was validated,
a HTTP post message was sent to a specifically designed test server, to be able to
collect a synchronised timestamp of when transactions was received from peers.
Each client was assigned an artificial network latency of 300ms to simulate a
real internet connection. Figure 8.2 show that there is a somewhat sub-linear
relation between the time it takes to send a transaction, and the number of peers
in the network. This is a great discovery that reveals the truth of proposition 8.1.
The median time reflect the proposition well, whereas the total time it took a
transaction to be multicast in the network begin to show strange behaviour in
networks of sizes above 80. The explanation for this behaviour could be that
the experiment was performed on a single computer where strange network
behaviour began when the CPU was overloaded and when the number of ports
in use was high.

Figure 8.2: The diagram illustrates the time it took an experiment to broadcast a
transaction to all peers on the network.

The second experiment serve show that the choice of max-peers directly
affects the connectivity of the network. The three first diagrams of figure 8.3
have max-peers set to 4, and the last three diagrams have max-peers set to 8.
One thing to notice, is that the seed is not necessarily the node with the most
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connections. In almost all diagrams the seed is not dominant, indicating that
the seed is of less importance once the network is established. Even with a small
max-peers setting, the seed will help new nodes be discovered on the network.

The second observations of the experiment is that the higher max-peers is,
the more connections a network has. This is obvious, but it should be noted
that more connections result in a highly coupled network. This might be good,
as messages then pass through less layers of peers, and thus multicast faster,
but it might also be an overhead for network traffic. On one computer, higher
max-peersmeans unresponsive CPU, due to many connections, so we decided
for a small max-peers during experimentation and test of the Aucoin client.
In a real scenario, where you do not run 50 clients on a single machine, this
conclusion could be different.

Figure 8.3: The diagrams show the connectivity of networks of different sizes and with
different max-peers variable.
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9 Data Storage
In this section, we consider the implementation of the data structures of the
Aucoin blockchain. To begin, let us discuss previous work by exploring the
Bitcoin core client: Bitcoin uses LevelDB, a key-value store, as the database
engine for storing blocks and UTXOs. Blocks are dumped on disk when received
from the network, and metadata describing each block is stored in the LevelDB
database. Yet another LevelDB database is used to maintain the UTXO set, such
that it can be easily searched through when validating blocks and transactions.
The point of having a separate database for UTXOs is to decrease the time spent
looking up transaction outputs. If no database for the UTXOs where present,
one would have to search the entire database of blocks, visiting their data on
disk, to validate incoming blocks and transactions [48]. As of today, the size of
the bitcoin blockchain is about 150GB, making it obvious that maintaining a
smaller database of UTXOs is preferable [25].

9.1 Data Storage in Aucoin
One drawback of the way Bitcoin handles its blockchain data structure is that it
is slow to rebuild the UTXO set if it is lost. Hence, a new peer has to revalidate
and lookup the blocks on disk through the LevelDB database [48]. This is a
bottleneck that we wish to address and improve upon in Aucoin.

Instead of having multiple key-value databases, Aucoin has a single SQLite
RDBMS, which holds the blocks, transactions, and transaction outputs and
inputs. For a relational schema of the database design see figure 9.1. An
important observation to make when studying the relational schema is that
blocks are not stored directly on disk. Instead, they are stored in a relationship
model between blocks, transactions, and transaction inputs and outputs. Since
every transaction input and output is directly accessible through a single call
to the database, it is fast to search for a specific UTXO, transaction, block, etc.
Furthermore, being able to express calls to the data storage efficiently using SQL
helped make the PID regulation algorithm discussed earlier more stable and
faster; while early simulations of the PID algorithm took tenths of minutes to
run, using SQL queries for finding means and searching blocks by block heights,
we eventually could run the simulations in just minutes.

9.2 Adding Blocks to the Blockchain
After a block has passed the preliminary validation checks it is added to the block
chain as a side branch off the main branch. It will then have to be determined
if the blocks should become the header of a new main branch. Consider the
following definition:

Definition 9.1 (Total work). Given a chain of blocks C, we can calculate the total
work done to arrive at the chain, by∑

b∈C

diff(b).
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Figure 9.1: Relational schema of the SQLite database used in Aucoin. Notice that blocks
are not directly stored in the format they are received from the network. This creates a
responsibility for the client to be able to interpret and encode a block from the database to
the data structure required by the Aucoin protocol. However, this is a feature by design.

Total work is the metric for determining if a branch should be considered as
the main branch, by which the chain with the most work is the one regarded
as valid. The first Bitcoin implementation determined the main branch as the
longest chain of blocks. This allowed the blockchain to be attacked; consider an
adversary mining a branch in private. As it is okay, to solve a block from the
past, an adversary could choose to build upon a block several months old. By
being dishonest about the timestamps, the adversary could cause the difficulty
adjustment algorithm to make block target unnaturally low, allowing him to
mine a chain of length much greater than the public one. Note that the total
work of this branch would be lower than the public one, since the adversary
would have to control more than half the mining power to catch up to the public
chain. Using total work as the metric protects from this attack. Algorithm 3 is
invoked after a block is added to the blockchain to reorganise the main branch.
The subroutine get_header() gets the old header of the blockchain, while the
subroutine get_block_with_most_work() gets the block that is intended to be
the new header. Figure 9.2 illustrates an example from running the algorithm
for reorganising the main branch after adding a block with total work of 40.

9.3 Wallet
The wallet is a data structure containing the private keys of the user. We have
seen that it is recommended to often generate new addresses, and the wallet
facilitates this. The wallet of Aucoin is directly accessible via the CLI and is
encryptable. This grants the user the possibility of securely storing the private
keys of the wallet. The technical implementation of the wallet itself is not worth
discussing. The part that is interesting, is why it was chosen to use elliptic
curves for the signature scheme, as opposed to RSA.
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Algorithm 3 Pseudo code for adding a block to the blockchain

reorganize_main_branch ( ) :
header_block = get_header ( )
most_work_block = get_block_with_most_work ( )

i f header i s most_work_block :
re turn

fork_block = f ind_fork ( )
while header_block != fork_block :

remove_from_main_branch ( header_block )
header_block = get_header ( )

block = most_work_block
blocks = [ ]
while block != fork_block :

blocks . append ( block )
block = block . previous_block

for block in blocks . reverse ( ) :
add_to_main_branch ( block )

30

Fork block20 

10 

30 

40

30

20 

10 

30 

40

30

20 

10 

30 

40

30

20 

10 

30 

40

blocks to add

(a) (b) (c) (d)

Figure 9.2: Example of the algorithm to find the branch with most work. The sum of
total work at each block is written inside the blocks. A white block is on the main branch,
and a grey is on a side branch. (a) The current header block and max_total_work_block
is not equal, therefore a blockchain reorganisation is needed. The algorithm finds the
block from which the max_total_work_block forks of off the main branch, as indicated by
the arrow. (b) Disconnect blocks from the main branch until the fork block is reached,
starting at the header block. (c) Find the blocks to add to the main branch by traversing
from the max_total_work_block down to the fork block. (d) Add the blocks starting with
the block above the fork block.
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RSA is a public key cryptography that builds on the assumption that factoring
prime numbers is hard. On the other hand, ECDSA is a public key cryptography
that builds on elliptic curves. One of the important features that a crypto-system
should have, is that it is a good trapdoor function, which means that it is
easy to calculate one direction, but hard to undo. It turns out that RSA is not
really a good trapdoor function. Conversely, elliptic curves provide an excellent
trapdoor function [7]. Another neat aspect of ECDSA in the application of a
cryptocurrency, is that for a 256-bit key, it offers the same amount of security as
a 3248-bit asymmetric RSA key. An experiment conducted by Cloudflare [8]
shows that it is possible to sign 9516 times per second using a 256-bit ECDSA
key versus 1001 signatures per second using a 2048-bit RSA key. This shows
that not only is ECDSA faster, it also provides significantly better protection for
the same amount of CPU-cycles. Most importantly, the smaller keys of ECDSA
means that transactions can be smaller, allow more to be included in a block.
The National Institute of Standards and Technology recommends a key size of
256-bit when using elliptic curve cryptography [24], which is why Aucoin uses
ECDSA with 256-bit private keys. Compared to RSA, the keys are both more
protected, smaller in size, and faster to create signatures with.
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10 Conclusion
With the introduction of Aucoin, we have created a scalable and reliable
cryptocurrency that features a simpler block and transaction structure than that
of Bitcoin. This structure delivers protection against transaction malleability,
which is still a known weakness of Bitcoin. By implementing Sign to Mine,
use of simple mining pools is disincentivised, alternating Aucoin from Bitcoin.
Miners of the Aucoin network can profit greater from dependent transactions by
selecting transactions in the mempool in time O(N · log(N)). Further, by taking
advantage of the possibilities offered by a relational database, nodes joining
the network will not have to rebuild the UTXO set, which saves an tremendous
amount of time. Aucoin implements a gossip network protocol for multicasting
messages in an overlay network structured as a mesh. This allow messages to
reach all peers of the network in time O(lo g(N))with significantly less overhead
than a densely connected network. Importantly, seed nodes – arguably the most
centralised part of the design – have been shown to be of less importance to
the network, which maintains reliable delivery of messages even at low level
of max-peers. The few centralised web-services of Bitcoin have been replaced
using heuristics to accomplish decentralised IP-address discovery while still
maintaining the security of the system. Lastly, the implementation of a PID
algorithm for adjusting the difficulty in the Aucoin network resulted in a stable
and almost constant average block time of 60 seconds. While Bitcoin adjusts
the block difficulty every 2016th block, Aucoin does this for every new block in
the system. This makes Aucoin more resistant by having a smooth difficulty
adjustment.
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11 Appendix
The source codeofAucoin is available athttps://cs.au.dk/~caspervk/aucoin.
tar.gz.
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