Added pres
This commit is contained in:
parent
059387bbd6
commit
5a830e2ade
|
@ -0,0 +1,4 @@
|
|||
package dk.au.pir.protocols.balancedBlockScheme;
|
||||
|
||||
public class balancedBlockClient {
|
||||
}
|
|
@ -0,0 +1,4 @@
|
|||
package dk.au.pir.protocols.balancedBlockScheme;
|
||||
|
||||
public class balancedBlockServer {
|
||||
}
|
BIN
pres/graphics/balancedScheme.png
Normal file
BIN
pres/graphics/balancedScheme.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 27 KiB |
BIN
pres/graphics/less_simple_protocol.png
Normal file
BIN
pres/graphics/less_simple_protocol.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 26 KiB |
BIN
pres/graphics/simple_protocol.pdf
Normal file
BIN
pres/graphics/simple_protocol.pdf
Normal file
Binary file not shown.
BIN
pres/graphics/simple_protocol.png
Normal file
BIN
pres/graphics/simple_protocol.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 17 KiB |
164
pres/pres.tex
Normal file
164
pres/pres.tex
Normal file
|
@ -0,0 +1,164 @@
|
|||
\documentclass{beamer}
|
||||
\setbeamertemplate{note page}[plain]
|
||||
\usetheme[progressbar=frametitle]{metropolis}
|
||||
|
||||
\usepackage{pgfpages}
|
||||
\usepackage[final]{pdfpages}
|
||||
\setbeameroption{show notes on second screen=right}
|
||||
|
||||
% g \in G is explanation as a model
|
||||
% f is the model we're trying to explain
|
||||
% does, being model agnostic, means we do not care about specifics of f.
|
||||
% We use Locally Weighted Square Loss as L, where I suspect pi is the weight and we thus estimate the difference between the actual model
|
||||
% and our explanation, and multiply this with the proximity of the data point z, to x.
|
||||
% Spørg lige Lasse hvorfor min(L(f,g,pi_x(z)) + omega(g)) bliver intractable, når omega(g) er en konstant!
|
||||
|
||||
|
||||
|
||||
|
||||
\usepackage{dirtytalk}
|
||||
\usepackage{bbm}
|
||||
\usepackage{setspace}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage[sfdefault,scaled=.85]{FiraSans}
|
||||
%\usepackage{newtxsf}
|
||||
\usepackage[ruled, linesnumbered]{algorithm2e}
|
||||
\SetKwInput{kwRequire}{Require}
|
||||
\SetKw{kwExpl}{explain}
|
||||
|
||||
\title{Private Information Retrieval}
|
||||
\subtitle{Transfering data in a sneaky way}
|
||||
\author{Casper Vestergaard Kristensen \and Thomas Carlsen \and Alexander Munch-Hansen}
|
||||
\institute{Aarhus University}
|
||||
\date{\today}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}
|
||||
\titlepage
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\setbeamertemplate{section in toc}[sections numbered]
|
||||
\frametitle{Outline}
|
||||
\setstretch{0.5}
|
||||
\tableofcontents
|
||||
|
||||
\end{frame}
|
||||
|
||||
\section{Background}
|
||||
\subsection{Introduction}
|
||||
\begin{frame}
|
||||
\frametitle{What have we done?}
|
||||
\begin{itemize}
|
||||
\item We have implemented several protocols, which we will briefly discuss
|
||||
\item We have tested these protocols on multiple setups
|
||||
\begin{itemize}
|
||||
\item Changing server size
|
||||
\item Amount of databases
|
||||
\item The block size
|
||||
\end{itemize}
|
||||
\item We have benchmarked on the same parameters
|
||||
\item Reached the conclusion again, that oftentimes big-O notation seldomly gives the correct, most practical, result.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Protocols}
|
||||
\subsubsection{Simple}
|
||||
\begin{frame}
|
||||
\frametitle{The most simple protocol}
|
||||
|
||||
\begin{block}{}
|
||||
|
||||
\begin{columns}[onlytextwidth,T]
|
||||
\column{\dimexpr\linewidth-40mm-5mm}
|
||||
|
||||
\begin{itemize}
|
||||
\item Most simple PIR protocol
|
||||
\item Client has to send a total of $1$ bit and has to receive $n$ bits
|
||||
\item Server has to send $n$ bits and receive $1$ bit
|
||||
\item Client can then figure out what data he wants
|
||||
\end{itemize}
|
||||
\column{40mm}
|
||||
\includegraphics[width=40mm]{graphics/simple_protocol.png}
|
||||
|
||||
\end{columns}
|
||||
\end{block}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{XOR-based}
|
||||
\begin{frame}
|
||||
\frametitle{Less simple protocol for $2$ databases}
|
||||
|
||||
\begin{block}{}
|
||||
|
||||
\begin{columns}[onlytextwidth,T]
|
||||
\column{\dimexpr\linewidth-50mm-5mm}
|
||||
\setstretch{0.9}
|
||||
\begin{itemize}
|
||||
\item Less simple PIR protocol
|
||||
\item Client has to worst case send $2n$ bits
|
||||
\begin{itemize}
|
||||
\item Expected is only on $n$ bits though
|
||||
\item Has to do quite a bit of work though, sampling randomness
|
||||
\end{itemize}
|
||||
\item Client receives only $1$ bit from each server though
|
||||
\item Server has to send $1$ bit and receive worst-case $2n$ bits
|
||||
\item Server has to compute a lot of XORs though
|
||||
\item Client can then XOR the results from the two servers
|
||||
\end{itemize}
|
||||
\column{60mm}
|
||||
|
||||
\includegraphics[width=70mm]{graphics/less_simple_protocol.png}
|
||||
|
||||
\end{columns}
|
||||
\end{block}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Improving the previous scheme, TODO!}
|
||||
\includegraphics[width=\textwidth]{graphics/balancedScheme.png}
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{Interpolation based}
|
||||
\begin{frame}
|
||||
\frametitle{Interpoly scheme}
|
||||
Won't introduce again, however, we expect it to be worse in almost all metrics:
|
||||
\begin{itemize}
|
||||
\item We have to send BigIntegers from client to server, as the scheme relies on large polynomials
|
||||
\item We have to send either all of the random sequences or the seed from which they originate
|
||||
\begin{itemize}
|
||||
\item This can be seen as a balancing act. If sequences are sent, server does not have to compute, but heavy on bandwidth
|
||||
\item If seed is sent, low on bandwidth but the server also has to compute the sequences
|
||||
\end{itemize}
|
||||
\item In general, all of the computations regarding the polynomials, are likely to slow down the response time of the servers
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
\section{Expected Results}
|
||||
\begin{frame}
|
||||
\frametitle{Overall expected results}
|
||||
\begin{itemize}
|
||||
\item We expect the scheme which we have yet to implement, to perform the best
|
||||
\begin{itemize}
|
||||
\item The client has to sent less, so less bandwidth
|
||||
\item The client has to compute less
|
||||
\item But the server has to compute and send more, which is acceptable, as we expect server to be stronger than client
|
||||
\end{itemize}
|
||||
\item We expect the simple scheme of $2$ databases to be outperformed by the scheme where the server simply sends the entire database
|
||||
\begin{itemize}
|
||||
\item This is due to the client still sending expected $n$ bits, but both server and client has to perform a computation
|
||||
\item Client has to compute randomness
|
||||
\item Server has to XOR
|
||||
\end{itemize}
|
||||
\item We expect the Interpoly scheme to be the worst in all regards, as mentioned in previous slide
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\section{Results}
|
||||
\begin{frame}
|
||||
\frametitle{Initial Results}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
Loading…
Reference in a new issue