package info.nightscout.androidaps.utils; /* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import android.os.SystemClock; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.net.DatagramPacket; import java.net.DatagramSocket; import java.net.InetAddress; import info.nightscout.androidaps.logging.L; /** * {@hide} *

* Simple SNTP client class for retrieving network time. *

* Sample usage: *

SntpClient client = new SntpClient();
 * if (client.requestTime("time.foo.com")) {
 *     long now = client.getNtpTime() + SystemClock.elapsedRealtime() - client.getNtpTimeReference();
 * }
 * 
*/ public class SntpClient { private static Logger log = LoggerFactory.getLogger(L.CORE); //private static final int REFERENCE_TIME_OFFSET = 16; private static final int ORIGINATE_TIME_OFFSET = 24; private static final int RECEIVE_TIME_OFFSET = 32; private static final int TRANSMIT_TIME_OFFSET = 40; private static final int NTP_PACKET_SIZE = 48; private static final int NTP_PORT = 123; private static final int NTP_MODE_CLIENT = 3; private static final int NTP_VERSION = 3; // Number of seconds between Jan 1, 1900 and Jan 1, 1970 // 70 years plus 17 leap days private static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L; // system time computed from NTP server response private static long mNtpTime; // value of SystemClock.elapsedRealtime() corresponding to mNtpTime private static long mNtpTimeReference; // round trip time in milliseconds private static long mRoundTripTime; public static abstract class Callback implements Runnable { public boolean networkConnected = false; public boolean success = false; public long time = 0; } public static synchronized void ntpTime(final Callback callback, boolean isConnected) { callback.networkConnected = isConnected; if (callback.networkConnected) { new Thread(() -> doNtpTime(callback)).start(); } else { callback.run(); } } static void doNtpTime(final Callback callback) { log.debug("Time detection started"); callback.success = requestTime("time.google.com", 5000); callback.time = getNtpTime() + SystemClock.elapsedRealtime() - getNtpTimeReference(); log.debug("Time detection ended: " + callback.success + " " + DateUtil.dateAndTimeString(getNtpTime())); callback.run(); } /** * Sends an SNTP request to the given host and processes the response. * * @param host host name of the server. * @param timeout network timeout in milliseconds. * @return true if the transaction was successful. */ private static synchronized boolean requestTime(String host, int timeout) { try { DatagramSocket socket = new DatagramSocket(); socket.setSoTimeout(timeout); InetAddress address = InetAddress.getByName(host); byte[] buffer = new byte[NTP_PACKET_SIZE]; DatagramPacket request = new DatagramPacket(buffer, buffer.length, address, NTP_PORT); // set mode = 3 (client) and version = 3 // mode is in low 3 bits of first byte // version is in bits 3-5 of first byte buffer[0] = NTP_MODE_CLIENT | (NTP_VERSION << 3); // get current time and write it to the request packet long requestTime = System.currentTimeMillis(); long requestTicks = SystemClock.elapsedRealtime(); writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, requestTime); socket.send(request); // read the response DatagramPacket response = new DatagramPacket(buffer, buffer.length); socket.receive(response); long responseTicks = SystemClock.elapsedRealtime(); long responseTime = requestTime + (responseTicks - requestTicks); socket.close(); // extract the results long originateTime = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET); long receiveTime = readTimeStamp(buffer, RECEIVE_TIME_OFFSET); long transmitTime = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET); long roundTripTime = responseTicks - requestTicks - (transmitTime - receiveTime); // receiveTime = originateTime + transit + skew // responseTime = transmitTime + transit - skew // clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2 // = ((originateTime + transit + skew - originateTime) + // (transmitTime - (transmitTime + transit - skew)))/2 // = ((transit + skew) + (transmitTime - transmitTime - transit + skew))/2 // = (transit + skew - transit + skew)/2 // = (2 * skew)/2 = skew long clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime)) / 2; // if (Config.LOGD) Log.d(TAG, "round trip: " + roundTripTime + " ms"); // if (Config.LOGD) Log.d(TAG, "clock offset: " + clockOffset + " ms"); // save our results - use the times on this side of the network latency // (response rather than request time) mNtpTime = responseTime + clockOffset; mNtpTimeReference = responseTicks; mRoundTripTime = roundTripTime; } catch (Exception e) { log.debug("request time failed: " + e); return false; } return true; } /** * Returns the time computed from the NTP transaction. * * @return time value computed from NTP server response. */ private static long getNtpTime() { return mNtpTime; } /** * Returns the reference clock value (value of SystemClock.elapsedRealtime()) * corresponding to the NTP time. * * @return reference clock corresponding to the NTP time. */ private static long getNtpTimeReference() { return mNtpTimeReference; } /** * Returns the round trip time of the NTP transaction * * @return round trip time in milliseconds. */ public long getRoundTripTime() { return mRoundTripTime; } /** * Reads an unsigned 32 bit big endian number from the given offset in the buffer. */ private static long read32(byte[] buffer, int offset) { byte b0 = buffer[offset]; byte b1 = buffer[offset + 1]; byte b2 = buffer[offset + 2]; byte b3 = buffer[offset + 3]; // convert signed bytes to unsigned values int i0 = ((b0 & 0x80) == 0x80 ? (b0 & 0x7F) + 0x80 : b0); int i1 = ((b1 & 0x80) == 0x80 ? (b1 & 0x7F) + 0x80 : b1); int i2 = ((b2 & 0x80) == 0x80 ? (b2 & 0x7F) + 0x80 : b2); int i3 = ((b3 & 0x80) == 0x80 ? (b3 & 0x7F) + 0x80 : b3); return ((long) i0 << 24) + ((long) i1 << 16) + ((long) i2 << 8) + (long) i3; } /** * Reads the NTP time stamp at the given offset in the buffer and returns * it as a system time (milliseconds since January 1, 1970). */ private static long readTimeStamp(byte[] buffer, int offset) { long seconds = read32(buffer, offset); long fraction = read32(buffer, offset + 4); return ((seconds - OFFSET_1900_TO_1970) * 1000) + ((fraction * 1000L) / 0x100000000L); } /** * Writes system time (milliseconds since January 1, 1970) as an NTP time stamp * at the given offset in the buffer. */ private static void writeTimeStamp(byte[] buffer, int offset, long time) { long seconds = time / 1000L; long milliseconds = time - seconds * 1000L; seconds += OFFSET_1900_TO_1970; // write seconds in big endian format buffer[offset++] = (byte) (seconds >> 24); buffer[offset++] = (byte) (seconds >> 16); buffer[offset++] = (byte) (seconds >> 8); buffer[offset++] = (byte) (seconds >> 0); long fraction = milliseconds * 0x100000000L / 1000L; // write fraction in big endian format buffer[offset++] = (byte) (fraction >> 24); buffer[offset++] = (byte) (fraction >> 16); buffer[offset++] = (byte) (fraction >> 8); // low order bits should be random data buffer[offset++] = (byte) (Math.random() * 255.0); } }