calculate only needed data in AMA
This commit is contained in:
parent
9722130299
commit
1b2500dc6c
2 changed files with 54 additions and 49 deletions
|
@ -19,7 +19,7 @@ import info.nightscout.utils.Round;
|
|||
public class Autosens {
|
||||
private static Logger log = LoggerFactory.getLogger(Autosens.class);
|
||||
|
||||
public static AutosensResult detectSensitivityandCarbAbsorption(List<BgReading> glucose_data, long mealTime) {
|
||||
public static AutosensResult detectSensitivityandCarbAbsorption(List<BgReading> glucose_data, Long mealTime) {
|
||||
|
||||
NSProfile profile = MainApp.getConfigBuilder().getActiveProfile().getProfile();
|
||||
|
||||
|
@ -125,7 +125,7 @@ public class Autosens {
|
|||
//log.debug("TIME: " + new Date(bgTime).toString() + " BG: " + bg + " SENS: " + sens + " DELTA: " + delta + " AVGDELTA: " + avgDelta + " IOB: " + iob.iob + " ACTIVITY: " + iob.activity + " BGI: " + bgi + " DEVIATION: " + deviation);
|
||||
|
||||
// if bgTime is more recent than mealTime
|
||||
if (bgTime > mealTime) {
|
||||
if (mealTime != null && bgTime > mealTime) {
|
||||
// figure out how many carbs that represents
|
||||
// but always assume at least 3mg/dL/5m (default) absorption
|
||||
double ci = Math.max(deviation, Constants.MIN_5M_CARBIMPACT);
|
||||
|
@ -134,60 +134,65 @@ public class Autosens {
|
|||
carbsAbsorbed += absorbed;
|
||||
}
|
||||
}
|
||||
//console.error("");
|
||||
log.debug(pastSensitivity);
|
||||
//console.log(JSON.stringify(avgDeltas));
|
||||
//console.log(JSON.stringify(bgis));
|
||||
Arrays.sort(avgDeltas);
|
||||
Arrays.sort(bgis);
|
||||
Arrays.sort(deviations);
|
||||
|
||||
for (double i = 0.9; i > 0.1; i = i - 0.02) {
|
||||
//console.error("p="+i.toFixed(2)+": "+percentile(avgDeltas, i).toFixed(2)+", "+percentile(bgis, i).toFixed(2)+", "+percentile(deviations, i).toFixed(2));
|
||||
if (percentile(deviations, (i + 0.02)) >= 0 && percentile(deviations, i) < 0) {
|
||||
double ratio = 1;
|
||||
String ratioLimit = "";
|
||||
String sensResult = "";
|
||||
|
||||
if (mealTime == null) {
|
||||
//console.error("");
|
||||
log.debug(pastSensitivity);
|
||||
//console.log(JSON.stringify(avgDeltas));
|
||||
//console.log(JSON.stringify(bgis));
|
||||
Arrays.sort(avgDeltas);
|
||||
Arrays.sort(bgis);
|
||||
Arrays.sort(deviations);
|
||||
|
||||
for (double i = 0.9; i > 0.1; i = i - 0.02) {
|
||||
//console.error("p="+i.toFixed(2)+": "+percentile(avgDeltas, i).toFixed(2)+", "+percentile(bgis, i).toFixed(2)+", "+percentile(deviations, i).toFixed(2));
|
||||
log.debug(Math.round(100 * i) + "% of non-meal deviations negative (target 45%-50%)");
|
||||
if (percentile(deviations, (i + 0.02)) >= 0 && percentile(deviations, i) < 0) {
|
||||
//console.error("p="+i.toFixed(2)+": "+percentile(avgDeltas, i).toFixed(2)+", "+percentile(bgis, i).toFixed(2)+", "+percentile(deviations, i).toFixed(2));
|
||||
log.debug(Math.round(100 * i) + "% of non-meal deviations negative (target 45%-50%)");
|
||||
}
|
||||
}
|
||||
}
|
||||
double pSensitive = percentile(deviations, 0.50);
|
||||
double pResistant = percentile(deviations, 0.45);
|
||||
//p30 = percentile(deviations, 0.3);
|
||||
double pSensitive = percentile(deviations, 0.50);
|
||||
double pResistant = percentile(deviations, 0.45);
|
||||
//p30 = percentile(deviations, 0.3);
|
||||
|
||||
// average = deviationSum / deviations.length;
|
||||
|
||||
//console.error("Mean deviation: "+average.toFixed(2));
|
||||
double basalOff = 0;
|
||||
//console.error("Mean deviation: "+average.toFixed(2));
|
||||
double basalOff = 0;
|
||||
|
||||
String sensResult = "";
|
||||
if (pSensitive < 0) { // sensitive
|
||||
basalOff = pSensitive * (60 / 5) / NSProfile.toMgdl(profile.getIsf(NSProfile.secondsFromMidnight()), profile.getUnits());
|
||||
sensResult = "Excess insulin sensitivity detected";
|
||||
} else if (pResistant > 0) { // resistant
|
||||
basalOff = pResistant * (60 / 5) / NSProfile.toMgdl(profile.getIsf(NSProfile.secondsFromMidnight()), profile.getUnits());
|
||||
sensResult = "Excess insulin resistance detected";
|
||||
} else {
|
||||
sensResult = "Sensitivity normal";
|
||||
if (pSensitive < 0) { // sensitive
|
||||
basalOff = pSensitive * (60 / 5) / NSProfile.toMgdl(profile.getIsf(NSProfile.secondsFromMidnight()), profile.getUnits());
|
||||
sensResult = "Excess insulin sensitivity detected";
|
||||
} else if (pResistant > 0) { // resistant
|
||||
basalOff = pResistant * (60 / 5) / NSProfile.toMgdl(profile.getIsf(NSProfile.secondsFromMidnight()), profile.getUnits());
|
||||
sensResult = "Excess insulin resistance detected";
|
||||
} else {
|
||||
sensResult = "Sensitivity normal";
|
||||
}
|
||||
log.debug(sensResult);
|
||||
ratio = 1 + (basalOff / profile.getMaxDailyBasal());
|
||||
|
||||
// don't adjust more than 1.5x
|
||||
double rawRatio = ratio;
|
||||
ratio = Math.max(ratio, Constants.AUTOSENS_MIN);
|
||||
ratio = Math.min(ratio, Constants.AUTOSENS_MAX);
|
||||
|
||||
if (ratio != rawRatio) {
|
||||
ratioLimit = "Ratio limited from " + rawRatio + " to " + ratio;
|
||||
log.debug(ratioLimit);
|
||||
}
|
||||
|
||||
double newisf = Math.round(NSProfile.toMgdl(profile.getIsf(NSProfile.secondsFromMidnight()), profile.getUnits()) / ratio);
|
||||
if (ratio != 1) {
|
||||
log.debug("ISF adjusted from " + NSProfile.toMgdl(profile.getIsf(NSProfile.secondsFromMidnight()), profile.getUnits()) + " to " + newisf);
|
||||
}
|
||||
//console.error("Basal adjustment "+basalOff.toFixed(2)+"U/hr");
|
||||
//console.error("Ratio: "+ratio*100+"%: new ISF: "+newisf.toFixed(1)+"mg/dL/U");
|
||||
}
|
||||
log.debug(sensResult);
|
||||
double ratio = 1 + (basalOff / profile.getMaxDailyBasal());
|
||||
|
||||
// don't adjust more than 1.5x
|
||||
double rawRatio = ratio;
|
||||
ratio = Math.max(ratio, Constants.AUTOSENS_MIN);
|
||||
ratio = Math.min(ratio, Constants.AUTOSENS_MAX);
|
||||
|
||||
String ratioLimit = "";
|
||||
if (ratio != rawRatio) {
|
||||
ratioLimit = "Ratio limited from " + rawRatio + " to " + ratio;
|
||||
log.debug(ratioLimit);
|
||||
}
|
||||
|
||||
double newisf = Math.round(NSProfile.toMgdl(profile.getIsf(NSProfile.secondsFromMidnight()), profile.getUnits()) / ratio);
|
||||
if (ratio != 1) {
|
||||
log.debug("ISF adjusted from " + NSProfile.toMgdl(profile.getIsf(NSProfile.secondsFromMidnight()), profile.getUnits()) + " to " + newisf);
|
||||
}
|
||||
//console.error("Basal adjustment "+basalOff.toFixed(2)+"U/hr");
|
||||
//console.error("Ratio: "+ratio*100+"%: new ISF: "+newisf.toFixed(1)+"mg/dL/U");
|
||||
|
||||
AutosensResult output = new AutosensResult();
|
||||
output.ratio = Round.roundTo(ratio, 0.01);
|
||||
|
|
|
@ -217,7 +217,7 @@ public class OpenAPSAMAPlugin implements PluginBase, APSInterface {
|
|||
log.debug("Limiting data to oldest available temps: " + new Date(oldestDataAvailable).toString() + " (" + bgReadings.size() + " records)");
|
||||
|
||||
if(MainApp.getConfigBuilder().isAMAModeEnabled()){
|
||||
lastAutosensResult = Autosens.detectSensitivityandCarbAbsorption(bgReadings, new Date().getTime());
|
||||
lastAutosensResult = Autosens.detectSensitivityandCarbAbsorption(bgReadings, null);
|
||||
} else {
|
||||
lastAutosensResult = new AutosensResult();
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue